On Strichartz estimates for Schrodinger operators in compact manifolds with boundary

被引:40
作者
Blair, Matthew D. [1 ]
Smith, Hart F.
Sogge, Christopher D.
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
10.1090/S0002-9939-07-09114-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local Strichartz estimates with a loss of derivatives over compact manifolds with boundary. Our results also apply more generally to compact manifolds with Lipschitz metrics.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 14 条
[1]  
ANTON R, STRICHARTZ INEQUALIT
[2]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[3]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[4]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[5]  
GINIBRE J, 1984, ANN I H POINCARE-AN, V1, P309
[6]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[7]   Dispersive estimates for principally normal pseudodifferential operators [J].
Koch, H ;
Tataru, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (02) :217-284
[8]   On the Lp norm of spectral clusters for compact manifolds with boundary [J].
Smith, Hart F. ;
Sogge, Christopher D. .
ACTA MATHEMATICA, 2007, 198 (01) :107-153
[9]   Spectral cluster estimates for C1,1, metrics [J].
Smith, Hart F. .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (05) :1069-1103
[10]   Strichartz estimates for a Schrodinger operator with nonsmooth coefficients [J].
Staffilanil, G ;
Tataru, D .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (7-8) :1337-1372