EMBEDDED H-PLANES IN HYPERBOLIC 3-SPACE

被引:3
作者
Coskunuzer, Baris [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
关键词
CONSTANT MEAN-CURVATURE; PLATEAU PROBLEM; HYPERSURFACES; SURFACES; EXISTENCE; SPACE;
D O I
10.1090/tran/7286
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any C-0 Jordan curve Gamma in S-infinity(2)(H-3), there exists an embedded H-plane P-H in H-3 with partial derivative P-infinity(H) = Gamma for any H epsilon (-1, 1). As a corollary, we prove that any quasi-Fuchsian hyperbolic 3-manifold M similar or equal to Sigma x R contains an H-surface Sigma(H) in the homotopy class of the core surface Sigma for any H epsilon (-1, 1). We also prove that for any C-1 Jordan curve in S-infinity(2)(H-3), there exists a unique minimizing H-plane P-H with partial derivative P-infinity(H) = G for a generic H epsilon (-1, 1).
引用
收藏
页码:1253 / 1269
页数:17
相关论文
共 30 条
[1]   COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS [J].
ANDERSON, MT .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :264-290
[2]   COMPLETE MINIMAL VARIETIES IN HYPERBOLIC SPACE [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :477-494
[3]  
Bers Lipman, 1972, B LOND MATH SOC, V4, P257, DOI [10.1112/blms/4.3.257, DOI 10.1112/BLMS/4.3.257]
[4]   Embeddedness of the solutions to the H-Plateau problem [J].
Coskunuzer, Bans .
ADVANCES IN MATHEMATICS, 2017, 317 :553-574
[5]   Minimizing constant mean curvature hypersurfaces in hyperbolic space [J].
Coskunuzer, Baris .
GEOMETRIAE DEDICATA, 2006, 118 (01) :157-171
[6]   Foliations of Hyperbolic Space by Constant Mean Curvature Hypersurfaces [J].
Coskunuzer, Baris .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (08) :1417-1431
[7]  
Coskunuzer B, 2017, J DIFFER GEOM, V105, P405
[8]   Asymptotic H-Plateau problem in H3 [J].
Coskunuzer, Baris .
GEOMETRY & TOPOLOGY, 2016, 20 (01) :613-627
[9]  
Coskunuzer B, 2010, AM J MATH, V132, P1091
[10]  
Coskunuzer Baris, 2014, P GOK GEOM TOP C 201, P120