Magnetic properties of nanoparticles useful for SQUID relaxometry in biomedical applications

被引:17
|
作者
Bryant, H. C. [1 ,3 ]
Adolphi, Natalie L. [1 ,4 ]
Huber, Dale L. [2 ]
Fegan, Danielle L. [1 ]
Monson, Todd C. [2 ]
Tessier, Trace E. [1 ]
Flynn, Edward R. [1 ]
机构
[1] Senior Sci LLC, Albuquerque, NM 87111 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA
基金
美国国家卫生研究院;
关键词
Magnetic nanoparticle; AC susceptometry; Magnetorelaxometry; Langevin function; Neel relaxation; Magnetite; TIME;
D O I
10.1016/j.jmmm.2010.10.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use dynamic susceptometry measurements to extract semiempirical temperature-dependent, 255-400 K, magnetic parameters that determine the behavior of single-core nanoparticles useful for SQUID relaxometry in biomedical applications. Volume susceptibility measurements were made in 5 K degree steps at nine frequencies in the 0.1-1000 Hz range, with a 0.2 mT amplitude probe field. The saturation magnetization (M-s) and anisotropy energy density (K) derived from the fitting of theoretical susceptibility to the measurements both increase with decreasing temperature; good agreement between the parameter values derived separately from the real and imaginary components is obtained. Characterization of the Neel relaxation time indicates that the conventional prefactor, 0.1 ns, is an upper limit, strongly correlated with the anisotropy energy density. This prefactor decreases substantially for lower temperatures as K increases. We find, using the values of the parameters determined from the real part of the susceptibility measurements at 300 K, that SQUID relaxometry measurements of relaxation and excitation curves on the same sample are well described. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:767 / 774
页数:8
相关论文
共 50 条
  • [1] Characterization of magnetite nanoparticles for SQUID-relaxometry and magnetic needle biopsy
    Adolphi, Natalie L.
    Huber, Dale L.
    Jaetao, Jason E.
    Bryant, Howard C.
    Lovato, Debbie M.
    Fegan, Danielle L.
    Venturini, Eugene L.
    Monson, Todd C.
    Tessier, Trace E.
    Hathaway, Helen J.
    Bergemann, Christian
    Larson, Richard S.
    Flynn, Edward R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (10) : 1459 - 1464
  • [2] Magnetic Nanoparticles: Properties, Synthesis and Biomedical Applications
    Khan, Salman
    Rizvi, Syed Mohd. Danish
    Ahmad, Varish
    Baig, Mohd Hassan
    Kamal, Mohammad Amjad
    Ahmad, Saheem
    Rai, Mayank
    Iqbal, A. N. Muhammad Zafar
    Mushtaq, Gohar
    Khan, Mohd Sajid
    CURRENT DRUG METABOLISM, 2015, 16 (08) : 685 - 704
  • [3] Ferrofluids of magnetic multicore nanoparticles for biomedical applications
    Dutz, Silvio
    Clement, Joachim H.
    Eberbeck, Dietmar
    Gelbrich, Thorsten
    Hergt, Rudolf
    Mueller, Robert
    Wotschadlo, Jana
    Zeisberger, Matthias
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (10) : 1501 - 1504
  • [4] Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry
    Adolphi, Natalie L.
    Huber, Dale L.
    Bryant, Howard C.
    Monson, Todd C.
    Fegan, Danielle L.
    Lim, JitKang
    Trujillo, Jason E.
    Tessier, Trace E.
    Lovato, Debbie M.
    Butler, Kimberly S.
    Provencio, Paula P.
    Hathaway, Helen J.
    Majetich, Sara A.
    Larson, Richard S.
    Flynn, Edward R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (19) : 5985 - 6003
  • [5] Magnetic parameters evaluation of magnetic nanoparticles for use in biomedical applications
    Elrefai, Ahmed L.
    Yoshida, Takashi
    Enpuku, Keiji
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 474 : 522 - 527
  • [6] Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications
    Tomitaka, Asahi
    Jeun, Minhong
    Bae, Seongtae
    Takemura, Yasushi
    JOURNAL OF MAGNETICS, 2011, 16 (02) : 164 - 168
  • [7] Magnetic nanoparticles for biomedical heating applications
    Dutz, S
    Hergt, R
    Mürbe, J
    Töpfer, J
    Müller, R
    Zeisberger, M
    Andrä, W
    Bellemann, ME
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2006, 220 (02): : 145 - 151
  • [8] Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI
    Adolphi, Natalie L.
    Butler, Kimberly S.
    Lovato, Debbie M.
    Tessier, T. E.
    Trujillo, Jason E.
    Hathaway, Helen J.
    Fegan, Danielle L.
    Monson, Todd C.
    Stevens, Tyler E.
    Huber, Dale L.
    Ramu, Jaivijay
    Milne, Michelle L.
    Altobelli, Stephen A.
    Bryant, Howard C.
    Larson, Richard S.
    Flynn, Edward R.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2012, 7 (03) : 308 - 319
  • [9] Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells
    Johnson, Cort
    Adolphi, Natalie L.
    Butler, Kimberly L.
    Lovato, Debbie M.
    Larson, Richard
    Schwindt, Peter D. D.
    Flynn, Edward R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (17) : 2613 - 2619
  • [10] Magnetic nanoparticles for environmental and biomedical applications: A review
    Mohammed, Leena
    Gomaa, Hassan G.
    Ragab, Doaa
    Zhu, Jesse
    PARTICUOLOGY, 2017, 30 : 1 - 14