Global existence for the Einstein vacuum equations in wave coordinates

被引:138
作者
Lindblad, H
Rodnianski, I
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1007/s00220-004-1281-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove global stability of Minkowski space for the Einstein vacuum equations in harmonic ( wave) coordinate gauge for the set of restricted data coinciding with the Schwarzschild solution in the neighborhood of space-like infinity. The result contradicts previous beliefs that wave coordinates are "unstable in the large" and provides an alternative approach to the stability problem originally solved ( for unrestricted data, in a different gauge and with a precise description of the asymptotic behavior at null infinity) by D. Christodoulou and S. Klainerman. Using the wave coordinate gauge we recast the Einstein equations as a system of quasilinear wave equations and, in absence of the classical null condition, establish a small data global existence result. In our previous work we introduced the notion of a weak null condition and showed that the Einstein equations in harmonic coordinates satisfy this condition. The result of this paper relies on this observation and combines it with the vector field method based on the symmetries of the standard Minkowski space. In a forthcoming paper we will address the question of stability of Minkowski space for the Einstein vacuum equations in wave coordinates for all "small" asymptotically flat data and the case of the Einstein equations coupled to a scalar field.
引用
收藏
页码:43 / 110
页数:68
相关论文
共 33 条
[1]  
Alinhac S, 2003, ASTERISQUE, P1
[2]   Rank 2 singular solutions for quasilinear wave equations [J].
Alinhac, S .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (18) :955-984
[3]   The null condition for quasilinear wave equations in two space dimensions I [J].
Alinhac, S .
INVENTIONES MATHEMATICAE, 2001, 145 (03) :597-618
[4]  
Choquet-Bruhat Y, 2000, ANN PHYS-BERLIN, V9, P258, DOI 10.1002/(SICI)1521-3889(200005)9:3/5<258::AID-ANDP258>3.0.CO
[5]  
2-Y
[6]  
CHOQUETBRUHAT Y, 1973, CR ACAD SCI A MATH, V276, P281
[7]   GLOBAL ASPECTS OF CAUCHY PROBLEM IN GENERAL RELATIVITY [J].
CHOQUETBRUHAT, Y ;
GEROCH, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (04) :329-+
[8]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[9]  
Christodoulou D., 1993, Princeton Math.Series, V41
[10]  
Christodoulou Demetrios, 2002, 9 M GROSSM M ROM 200, P44, DOI DOI 10.1142/9789812777386_0004]