Deep Neural Network Based Media Noise Predictors for Use in High-Density Magnetic Recording Turbo-Detectors

被引:25
作者
Sayyafan, Amirhossein [1 ]
Belzer, Benjamin J. [1 ]
Sivakumar, Krishnamoorthy [1 ]
Shen, Jinlu [1 ]
Chan, Kheong Sann [2 ]
James, Ashish [3 ]
机构
[1] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
[2] Nanjing Inst Technol, Nanjing 211167, Peoples R China
[3] ASTAR, I2R, Singapore, Singapore
基金
美国国家科学基金会;
关键词
Bahl-Cocke-Jelinek-Raviv (BCJR) detectors; convolutional neural network (CNN); deep neural network (DNN); magnetic recording; turbo-detectors; ALGORITHM;
D O I
10.1109/TMAG.2019.2939863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a combined Bahl-Cocke-Jelinek-Raviv (BCJR) and deep neural network (DNN) turbo-detection architecture for 1-D hard disk drive (HDD) magnetic recording. Simulated HDD readings based on a grain flipping probabilistic (GFP) model are input to a linear filter equalizer with a 1-D partial response (PR) target. The equalizer output is provided to the BCJR detector in order to minimize the intersymbol interference (ISI) due to the PR mask. The BCJR detector's log-likelihood-ratio (LLR) outputs (along with the linear equalizer outputs) are then input to the DNN detector, which estimates the signal-dependent media noise. The media noise estimate is then fed back to the BCJR detector in an iterative manner. Several DNN media noise estimation architectures based on fully connected (FC) and convolutional neural networks (CNNs) are investigated. For GFP data at 48 nm track pitch and 11 nm bit length, the CNN-based BCJR-DNN turbo detector reduces the detector bit error rate (BER) by 0.334x and the per bit computational time by 0.731x compared to a BCJR detector that incorporates 1-D pattern-dependent noise prediction (PDNP). The proposed BCJR-DNN turbo detection architecture can be generalized for two-dimensional magnetic recording (TDMR).
引用
收藏
页数:6
相关论文
共 14 条
[1]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[2]   Investigation Into Harmful Patterns Over Multitrack Shingled Magnetic Detection Using the Voronoi Model [J].
Bahrami, Mohsen ;
Matcha, Chaitanya Kumar ;
Khatami, Seyed Mehrdad ;
Roy, Shounak ;
Srinivasa, Shayan Garani ;
Vasic, Bane .
IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (12)
[3]  
Barry J. R, 2018, POINTRCNN 3D OBJECT, P1
[4]   Channel Models and Detectors for Two-Dimensional Magnetic Recording [J].
Chan, Kheong Sann ;
Radhakrishnan, Rathnakumar ;
Eason, Kwaku ;
Elidrissi, Moulay Rachid ;
Miles, Jim J. ;
Vasic, Bane ;
Krishnan, Anantha Raman .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (03) :804-811
[5]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[6]   The Viterbi algorithm and Markov noise memory [J].
Kavcic, A ;
Moura, JMF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) :291-301
[7]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[8]   Pattern-dependent noise prediction in signal-dependent noise [J].
Moon, J ;
Park, J .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2001, 19 (04) :730-743
[9]  
Viterbi A. J., 1979, Principles of Digital Communication and Coding
[10]   Micromagnetics-Based Analysis of Multi-Track Detection With Simplified 2-D Write Precompensation on Shingled Magnetic Recording [J].
Wang, Yao ;
Kumar, B. V. K. Vijaya .
IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (09)