Molecular recognition of DNA base pairs by the formamido/pyrrole and formamido/imidazole pairings in stacked polyamides

被引:27
作者
Buchmueller, KL
Staples, AM
Uthe, PB
Howard, CM
Pacheco, KAO
Cox, KK
Henry, JA
Bailey, SL
Horick, SM
Nguyen, B
Wilson, WD
Lee, M [1 ]
机构
[1] Furman Univ, Dept Chem, Greenville, SC 29613 USA
[2] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA
[3] Univ No Colorado, Dept Chem & Biochem, Greeley, CO 80639 USA
关键词
D O I
10.1093/nar/gki238
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, -ImPy- and -PyPy-. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and DeltaT (M) experiments. The f/Py pairing, when placed next to the -ImPy- or -PyPy- central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With -ImPy- central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson-Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the -PyPy- central pairings.
引用
收藏
页码:912 / 921
页数:10
相关论文
共 38 条