Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell

被引:41
|
作者
Xie, Meng [1 ,2 ]
Chu, Tiankuo [1 ,2 ]
Wang, Tiantian [1 ,2 ]
Wan, Kechuang [1 ,2 ]
Yang, Daijun [1 ,2 ]
Li, Bing [1 ,2 ]
Ming, Pingwen [1 ,2 ]
Zhang, Cunman [1 ,2 ]
机构
[1] Tongji Univ, Sch Automot Studies, Jiading Campus,4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Tongji Univ, Clean Energy Automot Engn Ctr, Jiading Campus,4800 Caoan Rd, Shanghai 201804, Peoples R China
关键词
proton exchange membrane fuel cell; membrane electrode assembly; catalytic layer; preparation; drying process; degradation; OXYGEN REDUCTION REACTION; POLYMER ELECTROLYTE MEMBRANE; GAS-DIFFUSION ELECTRODES; CATHODE CATALYST; PARTICLE-SIZE; ULTRA-LOW; ACCELERATED DEGRADATION; ALLOY ELECTROCATALYSTS; PLATINUM-UTILIZATION; LOADING ELECTRODES;
D O I
10.3390/membranes11110879
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, the composition, function and structure of the catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) are summarized. The hydrogen reduction reaction (HOR) and oxygen reduction reaction (ORR) processes and their mechanisms and the main interfaces of CL (PEM|CL and CL|MPL) are described briefly. The process of mass transfer (hydrogen, oxygen and water), proton and electron transfer in MEA are described in detail, including their influencing factors. The failure mechanism of CL (Pt particles, CL crack, CL flooding, etc.) and the degradation mechanism of the main components in CL are studied. On the basis of the existing problems, a structure optimization strategy for a high-performance CL is proposed. The commonly used preparation processes of CL are introduced. Based on the classical drying theory, the drying process of a wet CL is explained. Finally, the research direction and future challenges of CL are pointed out, hoping to provide a new perspective for the design and selection of CL materials and preparation equipment.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Preparation and Characterization of Nanofiber Catalyst Layer for Proton Exchange Membrane Fuel Cells
    Zhang, Qin-guo
    Tong, Shui-guang
    Tong, Zhe-ming
    Cheng, Zhe-wu
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2020, 9 (05)
  • [2] Dual-layer catalyst layers for increased proton exchange membrane fuel cell performance
    Garsany, Yannick
    Atkinson, Robert W., III
    Gould, Benjamin D.
    Martin, Rachel
    Dubau, Laetitia
    Chatenet, Marian
    Swider-Lyons, Karen E.
    JOURNAL OF POWER SOURCES, 2021, 514
  • [3] Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells
    Kim, Tae-Hyun
    Yi, Jae-You
    Jung, Chi-Young
    Jeong, Euigyung
    Yi, Sung-Chul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (01) : 478 - 485
  • [4] Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer
    Hou, Sanying
    Chi, Bin
    Liu, Guangzhi
    Ren, Jianwei
    Song, Huiyu
    Liao, Shijun
    ELECTROCHIMICA ACTA, 2017, 253 : 142 - 150
  • [5] Prediction of the effective conductivity of Nafion in the catalyst layer of a proton exchange membrane fuel cell
    Hongsirikarn, Kitiya
    Mo, Xunhua
    Liu, Zhiming
    Goodwin, James G., Jr.
    JOURNAL OF POWER SOURCES, 2010, 195 (17) : 5493 - 5500
  • [6] Significant improvement in cathode performance for proton exchange membrane fuel cell by a novel double catalyst layer design
    Su, Hua-Neng
    Liao, Shi-Jun
    Wu, Yan-Ni
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3477 - 3480
  • [7] Proton Exchange Membrane Fuel Cell Catalyst Layer Degradation Mechanisms: A Succinct Review
    Okonkwo, Paul C.
    CATALYSTS, 2025, 15 (01)
  • [8] Simulation on cathode catalyst layer in proton exchange membrane fuel cell: Sensitivity of design parameters to cell performance and oxygen distribution
    Li, Xiang
    Tang, Fumin
    Wang, Qianqian
    Li, Bing
    Dai, Haifeng
    Chang, Guofeng
    Zhang, Cunman
    Ming, Pingwen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (58) : 24452 - 24463
  • [9] Catalyst gradient for cathode active layer of proton exchange membrane fuel cell
    Antoine, O
    Bultel, Y
    Ozil, P
    Durand, R
    ELECTROCHIMICA ACTA, 2000, 45 (27) : 4493 - 4500
  • [10] AN INTELLIGENT SYSTEM OF CATALYST LAYER DEPOSITION FOR PROTON EXCHANGE MEMBRANE FUEL CELL
    Wang, En-Jung James
    Lee, Min-Fan Ricky
    Ko, Cheng-Hao Kevin
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2010, 33 (01) : 89 - 98