SrCo0.8Nb0.1Ta0.1O3-δ Based Cathodes for Electrolyte-Supported Proton-Conducting Solid Oxide Fuel Cells: Comparison with Ba0.5Sr0.5Co0.8Fe0.2O3-δ Based Cathodes and Implications

被引:8
|
作者
Sun, Shichen [1 ,2 ]
Cheng, Zhe [1 ,2 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Florida Int Univ, Ctr Study Matter Extreme Condit CeSMEC, Miami, FL 33199 USA
基金
美国国家科学基金会;
关键词
OXYGEN REDUCTION REACTION; HIGH-PERFORMANCE; COMPOSITE CATHODES; NEXT-GENERATION; LSCF; SOFC; ANODE; BSCF; CO2; H2O;
D O I
10.1149/1945-7111/ab6bba
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Previous studies suggest that Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) demonstrates high water uptake in humidified air and mixed protonic and electronic conduction as the cathode for intermediate temperature (similar to 400-600 degrees C) proton-conducting solid oxide fuel cells (PC-SOFC). However, whether such single phase mixed conducting cathodes would be optimal for the cathode oxygen reduction reaction (ORR) over PC-SOFC has not been well studied. In this research, another leading cathode material SrCo0.8Nb0.1Ta0.1O3-delta (SCNT) is investigated and compared with BSCF as the cathode for BaZr0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte-supported PC-SOFC cells from 750 to 450 degrees C. The results show at intermediate temperature, pure SCNT displays negligible water uptake and lower performance than pure BSCF. On the other hand, SCNT-BZCYYb composite cathode perform better than both pure SCNT and pure BSCF, while BSCF-BZCYYb composite performs the worst. These observations suggest that the strong affinity to H2O for the single phase cathode of BSCF at intermediate temperature seems to inhibit oxygen adsorption and limits its performance as the cathode for PC-SOFC despite its mixed protonic and electronic conduction. In comparison, a composite cathode such as SCNT-BZCYYb might be more promising by enabling a better balance between the need for water absorption and proton conduction and the need for efficient oxygen adsorption/exchange. (c) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based dual-gradient cathodes for solid oxide fuel cells
    Liu, Peng
    Luo, Zhifu
    Kong, Jiangrong
    Yang, Xianfeng
    Liu, Qicheng
    Xu, He
    CERAMICS INTERNATIONAL, 2018, 44 (04) : 4516 - 4519
  • [2] Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathodes for a proton conducting solid-oxide fuel cell
    Lin, Ye
    Ran, Ran
    Shao, Zongping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 8281 - 8288
  • [3] Gluing Ba0.5Sr0.5Co0.8Fe0.2O3-δ with Co3O4 as a cathode for proton-conducting solid oxide fuel cells
    Yang, Xuan
    Yin, Yanru
    Yu, Shoufu
    Bi, Lei
    SCIENCE CHINA-MATERIALS, 2023, 66 (03) : 955 - 963
  • [4] Evaluation of SrCo0.8Nb0.2O3-δ, SrCo0.8Ta0.2O3-δ and SrCo0.8Nb0.1Ta0.1O3-δ as air electrode materials for solid oxide electrolysis and reversible solid oxide cells
    Khan, Muhammad Shirjeel
    Xu, Xiaoyong
    Li, Mengran
    Rehman, Ateeq-ur
    Knibbe, Ruth
    Yago, Anya Josefa
    Zhu, Zhonghua
    ELECTROCHIMICA ACTA, 2019, 321
  • [5] A novel CO2-tolerant Ba0.5Sr0.5Co0.8Fe0.1Ta0.1O3-δ cathode with high performance for proton-conducting solid oxide fuel cells
    Wang, Feihong
    Xu, Xi
    Xia, Yunpeng
    Dong, Binbin
    Ke, Nianwang
    Hao, Luyuan
    Bi, Lei
    Xu, Xin
    Liu, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (67) : 33561 - 33571
  • [6] Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    McIntosh, Steven
    Vente, Jaap F.
    Haije, Wim G.
    Blank, Dave H. A.
    Bouwmeester, Henny J. M.
    SOLID STATE IONICS, 2006, 177 (19-25) : 1737 - 1742
  • [7] Sc-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes for protonic ceramic fuel cells
    Yang, Xin
    Wang, Zizhuo
    Li, Guoqiang
    Zhou, Yue
    Sun, Chongzheng
    Bi, Lei
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 40375 - 40383
  • [8] Infiltration, Overpotential and Ageing Effects on Cathodes for Solid Oxide Fuel Cells: La0.6Sr0.4Co0.2Fe0.8O3-δ versus Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Giuliano, A.
    Carpanese, M. P.
    Clematis, D.
    Boaro, M.
    Pappacena, A.
    Deganello, F.
    Liotta, L. F.
    Barbucci, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (10) : F3114 - F3122
  • [9] Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell
    Lin, Ye
    Ran, Ran
    Zheng, Yao
    Shao, Zongping
    Jin, Wanqin
    Xu, Nanping
    Ahn, Jeongmin
    JOURNAL OF POWER SOURCES, 2008, 180 (01) : 15 - 22
  • [10] Electrochemical performance of unsintered Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.6Sr0.4Co0.8Fe0.2O3-δ, and La0.8Sr0.2MnO3-δ cathodes for metal-supported solid oxide fuel cells
    Kim, Yu-Mi
    Kim-Lohsoontorn, Pattaraporn
    Baek, Seung-Wook
    Bae, Joongmyeon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) : 3138 - 3146