Generic bifurcations of low codimension of planar Filippov Systems

被引:208
作者
Guardia, M. [1 ]
Seara, T. M. [1 ]
Teixeira, M. A. [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Univ Estadual Campinas, Dept Math, IMECC, BR-6065 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Singularity; Non-smooth vector field; Structural stability; Bifurcation; SLIDING BIFURCATIONS;
D O I
10.1016/j.jde.2010.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article some qualitative and geometric aspects of non-smooth dynamical systems theory are discussed. The main aim of this article is to develop a systematic method for studying local (and global) bifurcations in non-smooth dynamical systems. Our results deal with the classification and characterization of generic codimension-2 singularities of planar Filippov Systems as well as the presentation of the bifurcation diagrams and some dynamical consequences. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1967 / 2023
页数:57
相关论文
共 28 条
[1]  
Arnold VI, 1998, ORDINARY DIFFERENTIA
[2]  
Bautin N.N., 1976, METODY PRIEMY KACHES
[3]  
Broucke ME, 2001, COMPUT APPL MATH, V20, P51
[4]   Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems [J].
Di Bernardo, M ;
Feigin, MI ;
Hogan, SJ ;
Homer, ME .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1881-1908
[5]   Sliding bifurcations: A novel mechanism for the sudden onset of chaos in dry friction oscillators [J].
Di Bernardo, M ;
Kowalczyk, P ;
Nordmark, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10) :2935-2948
[6]   Bifurcations of dynamical systems with sliding: derivation of normal-form mappings [J].
di Bernardo, M ;
Kowalczyk, P ;
Nordmark, A .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 170 (3-4) :175-205
[7]   Bifurcations in Nonsmooth Dynamical Systems [J].
di Bernardo, Mario ;
Budd, Chris J. ;
Champneys, Alan R. ;
Kowalczyk, Piotr ;
Nordmark, Arne B. ;
Tost, Gerard Olivar ;
Piiroinen, Petri T. .
SIAM REVIEW, 2008, 50 (04) :629-701
[8]   Nonhyperbolic boundary equilibrium bifurcations in planar Filippov systems: A case study approach [J].
Di Bernardo, Mario ;
Pagano, Daniel J. ;
Ponce, Enrique .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (05) :1377-1392
[9]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[10]  
Filippov A. F., 1988, MATH APPL SOV SER, V18