Biomass-derived dendritic-like porous carbon aerogels for supercapacitors

被引:43
|
作者
Ma, Yu-zhu [1 ,2 ]
Guo, Yan [1 ,2 ]
Zhou, Cong [3 ]
Wang, Cheng-yang [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, 19 XinJieKouWai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon aerogels; leonardite fulvic acid; solvent exchange method; supercapacitors; HIGH-PERFORMANCE SUPERCAPACITORS; NITROGEN-DOPED GRAPHENE; DOUBLE-LAYER CAPACITORS; ACTIVATED CARBONS; ELECTROCHEMICAL PERFORMANCE; RAMAN-SPECTROSCOPY; FUNCTIONAL-GROUPS; ELECTRODES; TEMPLATE; NANOFIBERS;
D O I
10.1016/j.electacta.2016.06.011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Three-dimensional (3D) dendritic-like hierarchical porous carbon areogels (PCAs) have been fabricated via a simple and efficient solvent exchange method followed by an activation process. The natural and renewable biomass material, leonardite fulvic acid (LFA) is used as the carbon source. The hierarchical porous structures are composed of numerous nanospheres with interconnected 3D carbon architectures which are in favor of enhancing the electrical conductivity and facilitating ion transport by providing small resistances and short diffusion pathways. The resultant PCAs are advantageous as electrodes for electrochemical energy storage. For example, the PCAs2 sample exhibits a superior high specific capacitance of 368 Fg(-1) at a current density of 0.05 A g(-1) in 6 M KOH electrolyte, which can still remain 228 F g(-1) when the current density increases to 100 A g(-1). The sample also has outstanding cycling stability with capacitance retention of 98.4% after 10,000 cycles. Remarkably, it is shown that the PCAs2 sample exhibits outstanding electrochemical performance in an organic electrolyte as well. It has an energy density of 43.50 Wh kg(-1) at a power density of 33.85 W kg(-1) and still maintains 23.25 Wh kg(-1) at a power density of 5.89 kW kg(-1). This suggests that the 3D hierarchical PCAs should be a competitive and promising supercapacitor electrode material. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条
  • [41] Rapid synthesis of biomass-derived carbon via induction pyrolysis for supercapacitors
    Li, Danyang
    Huang, Yang
    Yu, Chao
    Tang, Chengchun
    Lin, Jing
    DIAMOND AND RELATED MATERIALS, 2023, 136
  • [42] Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels
    Choi, Yong-Ki
    Park, Soo-Jin
    CARBON LETTERS, 2015, 16 (02) : 127 - 131
  • [43] Biomass-derived porous carbon anode for high-performance capacitive deionization
    Xie, Zhengzheng
    Shang, Xiaohong
    Yan, Junbin
    Hussain, Taimoor
    Nie, Pengfei
    Liu, Jianyun
    ELECTROCHIMICA ACTA, 2018, 290 : 666 - 675
  • [44] Biomass-Derived Porous Carbon with a Good Balance between High Specific Surface Area and Mesopore Volume for Supercapacitors
    Wang, Yanbo
    Chen, Yiqing
    Zhao, Hongwei
    Li, Lixiang
    Ju, Dongying
    Wang, Cunjing
    An, Baigang
    NANOMATERIALS, 2022, 12 (21)
  • [45] Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance
    Wang, Cunjing
    Wu, Dapeng
    Wang, Hongju
    Gao, Zhiyong
    Xu, Fang
    Jiang, Kai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 523 : 133 - 143
  • [46] Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors
    Wang, Lei
    Mu, Guang
    Tian, Chungui
    Sun, Li
    Zhou, Wei
    Yu, Peng
    Yin, Jie
    Fu, Honggang
    CHEMSUSCHEM, 2013, 6 (05) : 880 - 889
  • [47] Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors
    Zhang, Jie
    Chen, Jinwei
    Yang, Haowei
    Fan, Jinlong
    Zhou, Feilong
    Wang, Yichun
    Wang, Gang
    Wang, Ruilin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (10) : 2975 - 2984
  • [48] Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors
    Chung, Hsiu-Ying
    Pan, Guan-Ting
    Hong, Zhong-Yun
    Hsu, Chun-Tsung
    Chong, Siewhui
    Yang, Thomas Chung-Kuang
    Huang, Chao-Ming
    MOLECULES, 2020, 25 (18):
  • [49] Promising biomass-derived nitrogen-doped porous carbon for high performance supercapacitor
    Zhou, Jiangqi
    Wang, Min
    Li, Xin
    JOURNAL OF POROUS MATERIALS, 2019, 26 (01) : 99 - 108
  • [50] Porous Biomass Carbon Derived from Peanut Shells as Electrode Materials with Enhanced Electrochemical Performance for Supercapacitors
    Xiao, Zuoan
    Chen, Wenwen
    Liu, Ke
    Cui, Ping
    Zhan, Dan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (06): : 5370 - 5381