Biomass-derived dendritic-like porous carbon aerogels for supercapacitors

被引:43
|
作者
Ma, Yu-zhu [1 ,2 ]
Guo, Yan [1 ,2 ]
Zhou, Cong [3 ]
Wang, Cheng-yang [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, 19 XinJieKouWai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon aerogels; leonardite fulvic acid; solvent exchange method; supercapacitors; HIGH-PERFORMANCE SUPERCAPACITORS; NITROGEN-DOPED GRAPHENE; DOUBLE-LAYER CAPACITORS; ACTIVATED CARBONS; ELECTROCHEMICAL PERFORMANCE; RAMAN-SPECTROSCOPY; FUNCTIONAL-GROUPS; ELECTRODES; TEMPLATE; NANOFIBERS;
D O I
10.1016/j.electacta.2016.06.011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Three-dimensional (3D) dendritic-like hierarchical porous carbon areogels (PCAs) have been fabricated via a simple and efficient solvent exchange method followed by an activation process. The natural and renewable biomass material, leonardite fulvic acid (LFA) is used as the carbon source. The hierarchical porous structures are composed of numerous nanospheres with interconnected 3D carbon architectures which are in favor of enhancing the electrical conductivity and facilitating ion transport by providing small resistances and short diffusion pathways. The resultant PCAs are advantageous as electrodes for electrochemical energy storage. For example, the PCAs2 sample exhibits a superior high specific capacitance of 368 Fg(-1) at a current density of 0.05 A g(-1) in 6 M KOH electrolyte, which can still remain 228 F g(-1) when the current density increases to 100 A g(-1). The sample also has outstanding cycling stability with capacitance retention of 98.4% after 10,000 cycles. Remarkably, it is shown that the PCAs2 sample exhibits outstanding electrochemical performance in an organic electrolyte as well. It has an energy density of 43.50 Wh kg(-1) at a power density of 33.85 W kg(-1) and still maintains 23.25 Wh kg(-1) at a power density of 5.89 kW kg(-1). This suggests that the 3D hierarchical PCAs should be a competitive and promising supercapacitor electrode material. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条
  • [21] Tailoring hierarchically porous structure of biomass-derived carbon for high-performance supercapacitors
    Sun, Zhe
    Zhang, Miao
    Yin, Hui
    Hu, Qi
    Krishnan, Sarathkumar
    Huang, Zhanhua
    Qi, Houjuan
    Wang, Xiaolei
    RENEWABLE ENERGY, 2023, 219
  • [22] Recent progress of biomass-derived carbon materials for supercapacitors
    Wang, Jiashuai
    Zhang, Xiao
    Li, Zhe
    Ma, Yanqing
    Ma, Lei
    JOURNAL OF POWER SOURCES, 2020, 451
  • [23] Biomass-Derived Porous Carbon Materials for Electrocatalysis
    Lv, Yaokang
    Huang, Lin
    Chen, Chao
    Cai, Zhiwei
    Ruhlmann, Laurent
    CHEMISTRYSELECT, 2024, 9 (28):
  • [24] Biomass-Derived Porous Carbon Materials for Supercapacitor
    Yang, Hui
    Ye, Shewen
    Zhou, Jiaming
    Liang, Tongxiang
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [25] Biomass-derived porous carbon for microwave absorption
    Zhang, Runa
    Qiao, Jing
    Zhang, Xue
    Yang, Yunfei
    Zheng, Sinan
    Li, Bin
    Liu, Wei
    Liu, Jiurong
    Zeng, Zhihui
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 289
  • [26] Sustainable biomass-derived carbon aerogels for energy storage applications
    Li, Mengyang
    Pang, Boyi
    Dai, Suwei
    Cui, Yan
    Wu, Yunyi
    Li, Huanxin
    Luo, Bingcheng
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [27] One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors
    Fan, Zhuangjun
    Qi, Dongping
    Xiao, Ying
    Yan, Jun
    Wei, Tong
    MATERIALS LETTERS, 2013, 101 : 29 - 32
  • [28] Unravelling the role of pore structure of biomass-derived porous carbon in charge storage mechanisms for supercapacitors
    Sayed, Mostafa S.
    Aman, Delvin
    Fayed, Moataz G.
    Omran, Mostafa M.
    Zaki, Tamer
    Mohamed, Saad G.
    RSC ADVANCES, 2024, 14 (34) : 24631 - 24642
  • [29] Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors
    Liu, Xiaoguang
    Ma, Changde
    Li, Jiaxin
    Zielinska, Beata
    Kalenczuk, Ryszard J.
    Chen, Xuecheng
    Chu, Paul K.
    Tang, Tao
    Mijowska, Ewa
    JOURNAL OF POWER SOURCES, 2019, 412 : 1 - 9
  • [30] Biomass-derived porous activated carbon from anacardium occidentale shell as electrode material for supercapacitors
    Hepsiba, P.
    Rajkumar, S.
    Elanthamilan, E.
    Wang, Sea-Fue
    Merlin, J. Princy
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (18) : 8863 - 8873