On the non-universality of a critical exponent for self-avoiding walks

被引:7
作者
Bennett-Wood, D [1 ]
Cardy, JL
Enting, IG
Guttmann, AJ
Owczarek, AL
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
[2] Univ Oxford, Dept Phys Theoret Phys, Oxford OX1 3NP, England
[3] CSIRO, Div Atmospher Res, Aspendale, Vic 3195, Australia
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
self-avoiding walks; oriented walks; Manhattan lattice;
D O I
10.1016/S0550-3213(98)00419-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We have extended the enumeration of self-avoiding walks on the Manhattan lattice from 28 to 53 steps and for self-avoiding polygons from 48 to 84 steps. Analysis of this data suggests that the walk generating function exponent gamma = 1.3385 +/- 0.003, which is different from the corresponding exponent on the square, triangular and honeycomb lattices, This provides numerical support for an argument recently advanced by Cardy, to the effect that excluding walks with parallel nearest-neighbour steps should cause a change in the exponent gamma. The lattice topology of the Manhattan lattice precludes such parallel steps. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:533 / 552
页数:20
相关论文
共 20 条