Graphene oxide nanofilm to functionalize bioinert high strength ceramics

被引:12
作者
Desante, Gaelle [1 ]
Labude, Norina [2 ]
Ruetten, Stephan [3 ]
Roemer, Simon [2 ]
Kaufmann, Robert [4 ]
Zybala, Rafal [5 ,6 ]
Jagiello, Joanna [6 ]
Lipinska, Ludwika [6 ]
Chlanda, Adrian [6 ]
Telle, Rainer [1 ]
Neuss, Sabine [2 ,7 ]
Schickle, Karolina [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Mineral Engn, Mauerstr 5, D-52064 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Pathol, Pauwelsstr 30, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen, Electron Microscop Facil, Pauwelsstr 30, D-52074 Aachen, Germany
[4] Rhein Westfal TH Aachen, DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52056 Aachen, Germany
[5] Warsaw Univ Technol, Univ Res Ctr Funct Mat, Woloska 141, PL-02507 Warsaw, Poland
[6] Lukasiewicz Res Network Inst Microelect & Photon, Aleja Lotnikow 32-46, Warsaw, Poland
[7] Rhein Westfal TH Aachen, Helmholtz Inst Biomed Engn, Biointerface Grp, Pauwelsstr 30, D-52074 Aachen, Germany
关键词
Graphene oxide; Nanocoating; Zirconia; Functionalization; High strength ceramic; Osteogenic; MESENCHYMAL STEM-CELLS; OSTEOGENIC DIFFERENTIATION; ADHESION; IMMOBILIZATION; ZIRCONIA; CYTOCOMPATIBILITY; OSSEOINTEGRATION; MECHANISMS; CHEMISTRY; INFECTION;
D O I
10.1016/j.apsusc.2021.150670
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study aimed to join the proven osteogenic properties of graphene oxide (GO) with bioinert zirconia implants. The dip-coating technique allows achieving this goal by forming a thin, homogenous, hydrolytically, and mechanically stable GO film onto silanized ceramic-substrates. SEM, AFM, XPS, and contact angle measurements confirmed the presence, transparency, integrity, and homogenous covering character of the GO film. The GO film is hydrolytically stable since it remained intact after a soaking period of 24 days in double-distilled water (ddH(2)O) and phosphate buffered saline and resisted a ten-minute sonication treatment for in ddH(2)O. This strong hydrolytic stability is due to the silanization with 3-amino-propyl-diisopropylethoxy-silane (APDS) enhancing the anchoring of GO flakes onto zirconia surfaces. Besides, the GO film disinfectable in 70% ethanol. Subsequently, we assessed our immobilized GO film as cytocompatible for L929 mouse fibroblast and human mesenchymal stem cells and propitious for the osteogenic differentiation demonstrated by a two times upregulation of the osteogenic transcription factor RunX2. The active hydroxyl and carboxyl groups of the GO film open new perspectives for the functionalization of ceramic implants by immobilization of biological agents, such as growth factors or antibiotics, and thus enhance the osseointegration.
引用
收藏
页数:13
相关论文
共 73 条
  • [1] An YH, 1998, J BIOMED MATER RES, V43, P338, DOI 10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO
  • [2] 2-B
  • [3] Superhydrophilic Graphene-Loaded TiO2 Thin Film for Self-Cleaning Applications
    Anandan, Srinivasan
    Rao, Tata Narasinga
    Sathish, Marappan
    Rangappa, Dinesh
    Honma, Itaru
    Miyauchi, Masahiro
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (01) : 207 - 212
  • [4] [Anonymous], J TRACE MICROPROBE T
  • [5] Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review
    Apostu, Dragos
    Lucaciu, Ondine
    Berce, Cristian
    Lucaciu, Dan
    Cosma, Dan
    [J]. JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2018, 46 (06) : 2104 - 2119
  • [6] ARKLES B, 1977, CHEMTECH, V7, P766
  • [7] Thinnest Carbon Sheet promises Revolution Chemistry of the Graphene
    Balasubramanian, Kannan
    Burghard, Marko
    [J]. CHEMIE IN UNSERER ZEIT, 2011, 45 (04) : 240 - 249
  • [8] Bit A., 32 SO BIOMEDICAL ENG
  • [9] Biological Activation of Bioinert Medical High-Performance Oxide Ceramics by Hydrolytically Stable Immobilization of c(RGDyK) and BMP-2
    Boeke, Frederik
    Labude, Norina
    Lauria, Ines
    Ernst, Sabrina
    Mueller-Newen, Gerhard
    Neuss, Sabine
    Fischer, Horst
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (45) : 38669 - 38680
  • [10] Briggs D., 1996, PRACTICAL SURFACE AN, V2nd