Bi-modal Godel logic over [0,1]-valued Kripke frames

被引:38
作者
Caicedo, Xavier [1 ]
Oscar Rodriguez, Ricardo [2 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota, Colombia
[2] Univ Buenos Aires, Dept Computac, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
关键词
Godel logic; modal logic; fuzzy logic; Kripke models; modal algebras; many-valued logics;
D O I
10.1093/logcom/exs036
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the Godel bi-modal logic determined by fuzzy Kripke models where both the propositions and the accessibility relation are infinitely valued over the standard Godel algebra [0,1], and prove strong completeness of the Fischer Servi intuitionistic modal logic IK plus the prelinearity axiom with respect to this semantics. We axiomatize also the bi-modal analogues of classical T, S4 and S5, obtained by restricting to models over frames satisfying the [0,1]-valued versions of the structural properties which characterize these logics. As an application of the completeness theorems we obtain a representation theorem for bi-modal Godel algebras.
引用
收藏
页码:37 / 55
页数:19
相关论文
共 30 条
  • [1] [Anonymous], 1984, REND SEMIN MAT TORIN
  • [2] [Anonymous], 2001, DIVULGACIONES MATEMA
  • [3] Compact propositional Godel logics
    Baaz, M
    Zach, R
    [J]. 1998 28TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC - PROCEEDINGS, 1998, : 108 - 113
  • [4] Bezhanishvili G., 1997, P SEQ CALC KRIPK SEM, P86
  • [5] Bezhanishvili G., 1998, STUDIA LOGICA, V61, P367, DOI [10.1023/A:1005073905902, DOI 10.1023/A:1005073905902]
  • [6] Bou F, 2007, NEW DIMENSIONS IN FUZZY LOGIC AND RELATED TECHNOLOGIES, VOL I, PROCEEDINGS, P177
  • [7] MIPC AS FORMALISATION OF AN INTUITIONIST CONCEPT OF MODALITY
    BULL, RA
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1966, 31 (04) : 609 - &
  • [8] Standard Godel Modal Logics
    Caicedo, Xavier
    Rodriguez, Ricardo O.
    [J]. STUDIA LOGICA, 2010, 94 (02) : 189 - 214
  • [9] Chagrov A., 1997, Modal Logic
  • [10] Topological semantics and bisimulations for intuitionistic modal logics and their classical companion logics
    Davoren, J. M.
    [J]. Logical Foundations of Computer Science, Proceedings, 2007, 4514 : 162 - 179