On the singular elliptic systems involving multiple critical Sobolev exponents

被引:36
作者
Huang, Yan [1 ]
Kang, Dongsheng [1 ]
机构
[1] S Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic system; Solution; Critical exponent; Hardy inequality; Variational method; EQUATIONS; EXISTENCE; NONEXISTENCE;
D O I
10.1016/j.na.2010.08.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a singular elliptic system is investigated, which involves multiple critical Sobolev exponents and Hardy-type terms. By using variational methods and analytical techniques, the existence of positive and sign-changing solutions to the system is established. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:400 / 412
页数:13
相关论文
共 29 条
[1]  
Abdellaoui B, 2009, CALC VAR PARTIAL DIF, V34, P97, DOI 10.1007/s00526-008-0177-2
[2]   On systems of elliptic equations involving subcritical or critical Sobolev exponents [J].
Alves, CO ;
de Morais, DC ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :771-787
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
[Anonymous], PNLDE
[5]   Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities [J].
Bartsch, Thomas ;
Peng, Shuangjie ;
Zhang, Zhitao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :113-136
[6]  
Boccardo L, 2006, DISCRETE CONT DYN S, V16, P513
[7]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[8]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[9]   Solutions to critical elliptic equations with multi-singular inverse square potentials [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (02) :332-372
[10]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO