Lattice effect for enhanced hot-electron generation in nanoelectrodes

被引:15
作者
Bosomtwi, Dominic [1 ]
Osinski, Marek [1 ]
Babicheva, Viktoriia E. [2 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat, 1313 Goddard St SE, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Dept Elect & Comp Engn, 498 Terrace St NE, Albuquerque, NM 87106 USA
来源
OPTICAL MATERIALS EXPRESS | 2021年 / 11卷 / 09期
关键词
PLASMONIC NANOSTRUCTURES; SURFACE; PHOTOEMISSION; RELAXATION; PHOTODETECTION; NANOPARTICLES; RESONANCES;
D O I
10.1364/OME.430577
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A stronger electric field in metal nanostructures can be realized by exciting nanoparticle plasmonic resonances to enhance hot electron generation. One can alter the nanoparticle shape, size, material, and/or the refractive index of the surrounding medium to achieve higher efficiency. Here, we report the nanostructure design that enhances the generation of plasmonic hot electrons from the periodically arranged gold nanoelectrodes. The periodic arrangement results in the excitation of collective lattice resonances in proximity to the Rayleigh anomalies (diffraction order transitions). We show how to select a lattice period that gives the highest field enhancement and the potential for the most efficient generation of plasmonic hot electrons, which are injected into the water environment from gold nanoelectrodes. Our study can serve as a general guideline in designing plasmonic nanostructures with nanoelectrodes injecting hot electrons into an aqueous environment. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:3232 / 3244
页数:13
相关论文
共 40 条
  • [1] Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors
    Ahmadivand, Arash
    Sinha, Raju
    Vabbina, Phani Kiran
    Karabiyik, Mustafa
    Kaya, Serkan
    Pala, Nezih
    [J]. OPTICS EXPRESS, 2016, 24 (12): : 13665 - 13678
  • [2] Lattice effect in Mie-resonant dielectric nanoparticle array under oblique light incidence
    Babicheva, Viktoriia E.
    [J]. MRS COMMUNICATIONS, 2018, 8 (04) : 1455 - 1462
  • [3] Metasurfaces with Electric Quadrupole and Magnetic Dipole Resonant Coupling
    Babicheva, Viktoriia E.
    Evlyukhin, Andrey B.
    [J]. ACS PHOTONICS, 2018, 5 (05): : 2022 - 2033
  • [4] Resonant Lattice Kerker Effect in Metasurfaces With Electric and Magnetic Optical Responses
    Babicheva, Viktoriia E.
    Evlyukhin, Andrey B.
    [J]. LASER & PHOTONICS REVIEWS, 2017, 11 (06)
  • [5] Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption
    Babicheva, Viktoriia E.
    Zhukovsky, Sergei V.
    Ikhsanov, Renat Sh.
    Protsenko, Igor E.
    Smetanin, Igor V.
    Uskov, Alexander
    [J]. ACS PHOTONICS, 2015, 2 (08): : 1039 - 1048
  • [6] The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter
    Besteiro, Lucas V.
    Yu, Peng
    Wang, Zhiming
    Holleitner, Alexander W.
    Hartland, Gregory V.
    Wiederrecht, Gary P.
    Govorov, Alexander O.
    [J]. NANO TODAY, 2019, 27 : 120 - 145
  • [7] Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms
    Besteiro, Lucas V.
    Kong, Xiang-Tian
    Wang, Zhiming
    Hartland, Gregory
    Govorov, Alexander O.
    [J]. ACS PHOTONICS, 2017, 4 (11): : 2759 - 2781
  • [8] Bosomtwi D, 2020, IEEE CONF NANOTECH, P107, DOI [10.1109/nano47656.2020.9183643, 10.1109/NANO47656.2020.9183643]
  • [9] Plasma Mediated off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation
    Boulais, Etienne
    Lachaine, Remi
    Meunier, Michel
    [J]. NANO LETTERS, 2012, 12 (09) : 4763 - 4769
  • [10] Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]