Improving the Speed of MRI with Artificial Intelligence

被引:52
|
作者
Johnson, Patricia M. [1 ]
Recht, Michael P. [1 ]
Knoll, Florian [1 ]
机构
[1] NYU Langone Hlth, Radiol Dept, Ctr Biomed Imaging, 650 1st Ave, New York, NY 10016 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
magnetic resonance imaging; accelerated imaging; artificial intelligence; machine learning; NETWORK; RECONSTRUCTION;
D O I
10.1055/s-0039-3400265
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is a leading image modality for the assessment of musculoskeletal (MSK) injuries and disorders. A significant drawback, however, is the lengthy data acquisition. This issue has motivated the development of methods to improve the speed of MRI. The field of artificial intelligence (AI) for accelerated MRI, although in its infancy, has seen tremendous progress over the past 3 years. Promising approaches include deep learning methods for reconstructing undersampled MRI data and generating high-resolution from low-resolution data. Preliminary studies show the promise of the variational network, a state-of-the-art technique, to generalize to many different anatomical regions and achieve comparable diagnostic accuracy as conventional methods. This article discusses the state-of-the-art methods, considerations for clinical applicability, followed by future perspectives for the field.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 50 条
  • [41] Improving chronic disease management for children with knowledge graphs and artificial intelligence
    Yu, Gang
    Tabatabaei, Mohammad
    Mezei, Jozsef
    Zhong, Qianhui
    Chen, Siyu
    Li, Zheming
    Li, Jing
    Shu, LiQi
    Shu, Qiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 201
  • [42] Effectiveness of artificial intelligence in improving colonoscopy quality
    Gadour, Eyad
    Hassan, Zeinab
    Hashim, Ahmed
    Miutescu, Bogdan
    Okasha, Hussein
    EGYPTIAN JOURNAL OF INTERNAL MEDICINE, 2024, 36 (01)
  • [43] Artificial Intelligence in Nuclear Medicine
    Nensa, Felix
    Demircioglu, Aydin
    Rischpler, Christoph
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60 : 29S - 37S
  • [44] Artificial intelligence in the clinical laboratory
    Hou, Hanjing
    Zhang, Rui
    Li, Jinming
    CLINICA CHIMICA ACTA, 2024, 559
  • [45] Applications of artificial intelligence in obstetrics
    Kim, Ho Yeon
    Cho, Geum Joon
    Kwon, Han Sung
    ULTRASONOGRAPHY, 2023, 42 (01) : 2 - 9
  • [46] Artificial intelligence for MRI stroke detection: a systematic review and meta-analysis
    Bojsen, Jonas Asgaard
    Elhakim, Mohammad Talal
    Graumann, Ole
    Gaist, David
    Nielsen, Mads
    Harbo, Frederik Severin Grae
    Krag, Christian Hedeager
    Sagar, Malini Vendela
    Kruuse, Christina
    Boesen, Mikael Ploug
    Rasmussen, Benjamin Schnack Brandt
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [47] Artificial intelligence and MRI in sinonasal tumors discrimination: where do we stand?
    Gravante, Giacomo
    Arosio, Alberto Daniele
    Curti, Nico
    Biondi, Riccardo
    Berardi, Luigi
    Gandolfi, Alberto
    Turri-Zanoni, Mario
    Castelnuovo, Paolo
    Remondini, Daniel
    Bignami, Maurizio
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (03) : 1557 - 1566
  • [48] Artificial Intelligence Predictive Analytics in the Management of Outpatient MRI Appointment No-Shows
    Chong, Le Roy
    Tsai, Koh Tzan
    Lee, Lee Lian
    Foo, Seck Guan
    Chang, Piek Chim
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (05) : 1155 - 1162
  • [49] Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends
    Bardis, Michelle D.
    Houshyar, Roozbeh
    Chang, Peter D.
    Ushinsky, Alexander
    Glavis-Bloom, Justin
    Chahine, Chantal
    Bui, Thanh-Lan
    Rupasinghe, Mark
    Filippi, Christopher G.
    Chow, Daniel S.
    CANCERS, 2020, 12 (05)
  • [50] Artificial Intelligence for Breast MRI in 2008-2018: A Systematic Mapping Review
    Codari, Marina
    Schiaffino, Simone
    Sardanelli, Francesco
    Trimboli, Rubina Manuela
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (02) : 280 - 292