Improving the Speed of MRI with Artificial Intelligence

被引:52
|
作者
Johnson, Patricia M. [1 ]
Recht, Michael P. [1 ]
Knoll, Florian [1 ]
机构
[1] NYU Langone Hlth, Radiol Dept, Ctr Biomed Imaging, 650 1st Ave, New York, NY 10016 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
magnetic resonance imaging; accelerated imaging; artificial intelligence; machine learning; NETWORK; RECONSTRUCTION;
D O I
10.1055/s-0039-3400265
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is a leading image modality for the assessment of musculoskeletal (MSK) injuries and disorders. A significant drawback, however, is the lengthy data acquisition. This issue has motivated the development of methods to improve the speed of MRI. The field of artificial intelligence (AI) for accelerated MRI, although in its infancy, has seen tremendous progress over the past 3 years. Promising approaches include deep learning methods for reconstructing undersampled MRI data and generating high-resolution from low-resolution data. Preliminary studies show the promise of the variational network, a state-of-the-art technique, to generalize to many different anatomical regions and achieve comparable diagnostic accuracy as conventional methods. This article discusses the state-of-the-art methods, considerations for clinical applicability, followed by future perspectives for the field.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 50 条
  • [21] Artificial Intelligence to Speed Up Training in Echocardiography: The Next Frontier
    Meucci, Maria Chiara
    Delgado, Victoria
    CIRCULATION-CARDIOVASCULAR IMAGING, 2023, 16 (11) : 914 - 916
  • [22] An Artificial Intelligence Multiprocessing Scheme for the Diagnosis of Osteosarcoma MRI Images
    Wu, Jia
    Xiao, Pei
    Huang, Haojie
    Gou, Fangfang
    Zhou, Zhixun
    Dai, Zhehao
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (09) : 4656 - 4667
  • [23] Is artificial intelligence improving the audit process?
    Fedyk, Anastassia
    Hodson, James
    Khimich, Natalya
    Fedyk, Tatiana
    REVIEW OF ACCOUNTING STUDIES, 2022, 27 (03) : 938 - 985
  • [24] Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes
    Gandhi, Zainab
    Gurram, Priyatham
    Amgai, Birendra
    Lekkala, Sai Prasanna
    Lokhandwala, Alifya
    Manne, Suvidha
    Mohammed, Adil
    Koshiya, Hiren
    Dewaswala, Nakeya
    Desai, Rupak
    Bhopalwala, Huzaifa
    Ganti, Shyam
    Surani, Salim
    CANCERS, 2023, 15 (21)
  • [25] Artificial Intelligence Tools for Improving Manometric Diagnosis of Esophageal Dysmotility
    Fass O.
    Rogers B.D.
    Gyawali C.P.
    Current Gastroenterology Reports, 2024, 26 (4) : 115 - 123
  • [26] MRI-based artificial intelligence to predict infection following total hip arthroplasty failure
    Domenico Albano
    Salvatore Gitto
    Carmelo Messina
    Francesca Serpi
    Christian Salvatore
    Isabella Castiglioni
    Luigi Zagra
    Elena De Vecchi
    Luca Maria Sconfienza
    La radiologia medica, 2023, 128 : 340 - 346
  • [27] MRI-based artificial intelligence to predict infection following total hip arthroplasty failure
    Albano, Domenico
    Gitto, Salvatore
    Messina, Carmelo
    Serpi, Francesca
    Salvatore, Christian
    Castiglioni, Isabella
    Zagra, Luigi
    De Vecchi, Elena
    Sconfienza, Luca Maria
    RADIOLOGIA MEDICA, 2023, 128 (03): : 340 - 346
  • [28] Improving Holistic Business Intelligence with Artificial Intelligence for Demand Forecasting
    Alfurhood, Badria Sulaiman
    Alonazi, Wadi B.
    Arunkumar, K.
    Santhi, S.
    Tawfeq, Jamal fadhil
    Rasheed, Tariq
    Poovendran, Parthasarathy
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2024, 42 (1-3) : 241 - 260
  • [29] Artificial intelligence and radiomics Value in cardiac MRI
    Rau, Alexander
    Soschynski, Martin
    Taron, Jana
    Ruile, Philipp
    Schlett, Christopher L.
    Bamberg, Fabian
    Krauss, Tobias
    RADIOLOGIE, 2022, 62 (11): : 947 - 953
  • [30] Patient perspectives on the use of artificial intelligence in prostate cancer diagnosis on MRI
    Fransen, Stefan J.
    Kwee, T. C.
    Rouw, D.
    Roest, C.
    van Lohuizen, Q. Y.
    Simonis, F. F. J.
    van Leeuwen, P. J.
    Heijmink, S.
    Ongena, Y. P.
    Haan, M.
    Yakar, D.
    EUROPEAN RADIOLOGY, 2025, 35 (02) : 769 - 775