Simulating Soil Organic Carbon Responses to Cropping Intensity, Tillage, and Climate Change in Pacific Northwest Dryland

被引:10
|
作者
Gollany, Hero T. [1 ]
Polumsky, Robert W. [1 ]
机构
[1] USDA ARS, Columbia Plateau Conservat Res Ctr, 48037 Tubbs Ranch Rd, Adams, OR 97810 USA
关键词
LONG-TERM CHANGES; NO-TILLAGE; MATTER; NITROGEN; CQESTR; MODEL; DECOMPOSITION; DYNAMICS; SEQUESTRATION; AGRICULTURE;
D O I
10.2134/jeq2017.09.0374
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Managing dryland cropping systems to increase soil organic C (SOC) under changing climate is challenging after decades of winter wheat (Triticum aestivum L.)-fallow and moldboard plow tillage (W-F/MP). The objective was to use CQESTR, a process-based C model, and SOC data collected in 2004, 2008, and 2012 to predict the best management to increase SOC under changing climate in four cropping systems, which included continuous wheat under no tillage (W-W/NT), wheat and sorghum' sudangrass [Sorghum bicolor (L.) Moench.' Sorghum sudanese L.] under no tillage, wheat-fallow under sweep tillage, and W-F/MP. Since future yields and climate are uncertain, 20 scenarios for each cropping system were simulated with four climate projections and five crop yield scenarios (current crop yields, and 10 or 30% greater or lesser yields). Measured and simulated SOC were significantly (p < 0.0001) correlated (r = 0.98) at all soil depths. Predicted SOC changes ranged from -12.03 to 2.56 Mg C ha(-1) in the 1-m soil depth for W-F/MP and W-W/NT, respectively, during the 2012 to 2052 predictive period. Only W-W/NT sequestered SOC at a rate of 0.06 Mg C ha(-1) yr(-1) under current crop yields and climate. Under climate change and yield scenarios, W-W/NT lost SOC except with a 30% wheat yield increase for 40 yr. Predicted SOC increases in W-W/NT were 0.71, 1.16, and 0.88 Mg C ha(-1) under the Oregon Climate Assessment Reports for low emissions and high emissions and the Regional Climate Model version 3 with boundary conditions from the Third Generation Coupled Global Climate Model, respectively, with 30% yield increases. Continuous no-till cropping would increase SOC and improve soil health and resiliency to lessen the impact of extreme weather.
引用
收藏
页码:625 / 634
页数:10
相关论文
共 50 条
  • [41] Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review
    Ghimire, Rajan
    Lamichhane, Sushil
    Acharya, Bharat Sharma
    Bista, Prakriti
    Sainju, Upendra Man
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (01) : 1 - 15
  • [42] Soil carbon dynamics under organic farming: Impact of tillage and cropping diversity
    Babu, Subhash
    Singh, Raghavendra
    Avasthe, Ravikant
    Kumar, Sanjeev
    Rathore, Sanjay S.
    Singh, Vinod K.
    Ansari, Meraj A.
    Valente, Donatella
    Petrosillo, Irene
    ECOLOGICAL INDICATORS, 2023, 147
  • [43] Model structures amplify uncertainty in predicted soil carbon responses to climate change
    Shi, Zheng
    Crowell, Sean
    Luo, Yiqi
    Moore, Berrien, III
    NATURE COMMUNICATIONS, 2018, 9
  • [44] Managing Soil Organic Carbon for Mitigating Climate Change and Increasing Food Security
    Rumpel, Cornelia
    Chabbi, Abad
    AGRONOMY-BASEL, 2021, 11 (08):
  • [45] Predicting climate change effects on surface soil organic carbon of Louisiana, USA
    Zhong, Biao
    Xu, Yi Jun
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2014, 186 (10) : 6169 - 6192
  • [46] Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis
    Crystal-Ornelas, Robert
    Thapa, Resham
    Tully, Katherine L.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2021, 312
  • [47] Effects of climate change and elevated atmospheric CO2 on soil organic carbon: a response equation
    Lin, Zhongbing
    Zhang, Renduo
    CLIMATIC CHANGE, 2012, 113 (02) : 107 - 120
  • [48] Grassland contribution to soil organic carbon stock under climate change scenarios in Basque Country (Spain)
    Doblas-Rodrigo, Alvaro
    Gallejones, Patricia
    Artetxe, Ainara
    Rosa, Eduardo
    del Hierro, Oscar
    Merino, Pilar
    REGIONAL ENVIRONMENTAL CHANGE, 2022, 22 (01)
  • [49] Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture
    Rasmussen, PE
    Albrecht, SL
    Smiley, RW
    SOIL & TILLAGE RESEARCH, 1998, 47 (3-4) : 197 - 205
  • [50] Tillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China
    Wang, Hao
    Wang, Shulan
    Zhang, Yujiao
    Wang, Xiaoli
    Wang, Rui
    Li, Jun
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (09) : 2880 - 2887