Simulating Soil Organic Carbon Responses to Cropping Intensity, Tillage, and Climate Change in Pacific Northwest Dryland

被引:10
|
作者
Gollany, Hero T. [1 ]
Polumsky, Robert W. [1 ]
机构
[1] USDA ARS, Columbia Plateau Conservat Res Ctr, 48037 Tubbs Ranch Rd, Adams, OR 97810 USA
关键词
LONG-TERM CHANGES; NO-TILLAGE; MATTER; NITROGEN; CQESTR; MODEL; DECOMPOSITION; DYNAMICS; SEQUESTRATION; AGRICULTURE;
D O I
10.2134/jeq2017.09.0374
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Managing dryland cropping systems to increase soil organic C (SOC) under changing climate is challenging after decades of winter wheat (Triticum aestivum L.)-fallow and moldboard plow tillage (W-F/MP). The objective was to use CQESTR, a process-based C model, and SOC data collected in 2004, 2008, and 2012 to predict the best management to increase SOC under changing climate in four cropping systems, which included continuous wheat under no tillage (W-W/NT), wheat and sorghum' sudangrass [Sorghum bicolor (L.) Moench.' Sorghum sudanese L.] under no tillage, wheat-fallow under sweep tillage, and W-F/MP. Since future yields and climate are uncertain, 20 scenarios for each cropping system were simulated with four climate projections and five crop yield scenarios (current crop yields, and 10 or 30% greater or lesser yields). Measured and simulated SOC were significantly (p < 0.0001) correlated (r = 0.98) at all soil depths. Predicted SOC changes ranged from -12.03 to 2.56 Mg C ha(-1) in the 1-m soil depth for W-F/MP and W-W/NT, respectively, during the 2012 to 2052 predictive period. Only W-W/NT sequestered SOC at a rate of 0.06 Mg C ha(-1) yr(-1) under current crop yields and climate. Under climate change and yield scenarios, W-W/NT lost SOC except with a 30% wheat yield increase for 40 yr. Predicted SOC increases in W-W/NT were 0.71, 1.16, and 0.88 Mg C ha(-1) under the Oregon Climate Assessment Reports for low emissions and high emissions and the Regional Climate Model version 3 with boundary conditions from the Third Generation Coupled Global Climate Model, respectively, with 30% yield increases. Continuous no-till cropping would increase SOC and improve soil health and resiliency to lessen the impact of extreme weather.
引用
收藏
页码:625 / 634
页数:10
相关论文
共 50 条
  • [21] No-tillage and rye cover crop systems improve soil water retention by increasing soil organic carbon in Andosols under humid subtropical climate
    Hashimi, Rahmatullah
    Huang, Qiliang
    Dewi, Ratih Kemala
    Nishiwaki, Junko
    Komatsuzaki, Masakazu
    SOIL & TILLAGE RESEARCH, 2023, 234
  • [22] Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland
    Wang, Bisheng
    Gao, Lili
    Yu, Weishui
    Wei, Xueqin
    Li, Jing
    Li, Shengping
    Song, Xiaojun
    Liang, Guopeng
    Cai, Dianxiong
    Wu, Xueping
    JOURNAL OF ARID LAND, 2019, 11 (02) : 241 - 254
  • [23] Changes in soil organic carbon fractions in response to different tillage practices under a wheat-maize double cropping system
    Xue, Jian-Fu
    Pu, Chao
    Zhao, Xin
    Wei, Yan-Hua
    Zhai, Yun-Long
    Zhang, Xiang-Qian
    Lal, Rattan
    Zhang, Hai-Lin
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (06) : 1555 - 1564
  • [24] Soil organic carbon and nitrogen responses to occasional tillage in a continuous no-tillage system
    Thapa, Vesh R.
    Ghimire, Rajan
    Paye, Wooiklee S.
    VanLeeuwen, Dawn
    SOIL & TILLAGE RESEARCH, 2023, 227
  • [25] Effect of long-term tillage and cropping system on portion of fungal and bacterial necromass carbon in soil organic carbon
    Zhang, Yan
    Gao, Yan
    Zhang, Yang
    Huang, Dandan
    Li, Xiujun
    Gregorich, Edward
    McLaughlin, Neil
    Zhang, Xiaoping
    Chen, Xuewen
    Zhang, Shixiu
    Liang, Aizhen
    Xiang, Yang
    SOIL & TILLAGE RESEARCH, 2022, 218
  • [26] Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow
    Hu, Yigang
    Wang, Zengru
    Wang, Qi
    Wang, Shiping
    Zhang, Zhishan
    Zhang, Zhenhua
    Zhao, Yang
    JOURNAL OF SOILS AND SEDIMENTS, 2017, 17 (02) : 326 - 339
  • [27] Dynamics in soil organic carbon of wheat-maize dominant cropping system in the North China Plain under tillage and residue management
    Zhao, Xin
    Virk, Ahmad Latif
    Ma, Shou-Tian
    Kan, Zheng-Rong
    Qi, Jian-Ying
    Pu, Chao
    Yang, Xiao-Guang
    Zhang, Hai-Lin
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 265
  • [28] Dryland Crop Yields and Soil Organic Matter as Influenced by Long-Term Tillage and Cropping Sequence
    Sainju, Upendra M.
    Lenssen, Andrew W.
    Caesar-TonThat, Thecan
    Evans, Robert G.
    AGRONOMY JOURNAL, 2009, 101 (02) : 243 - 251
  • [29] Effects of tillage systems on soil organic carbon and total nitrogen in a double paddy cropping system in Southern China
    Xue, Jian-Fu
    Pu, Chao
    Liu, Sheng-Li
    Chen, Zhong-Du
    Chen, Fu
    Xiao, Xiao-Ping
    Lal, Rattan
    Zhang, Hai-Lin
    SOIL & TILLAGE RESEARCH, 2015, 153 : 161 - 168
  • [30] Soil organic and inorganic carbon interactions under tillage and cover cropping determine potential for carbon accumulation in temperate, calcareous soils
    Ball, K. R.
    Guo, Y.
    Hallett, P. D.
    Smith, P.
    Moreno-Ramon, H.
    Morris, N. L.
    Malik, A. A.
    SOIL & TILLAGE RESEARCH, 2025, 247