GLOBALIZATION OF TWISTED PARTIAL HOPF ACTIONS

被引:15
|
作者
Alves, Marcelo M. S. [1 ]
Batista, Eliezer [2 ]
Dokuchaev, Michael [3 ]
Paques, Antonio [4 ]
机构
[1] Univ Fed Parana, Dept Matemat, BR-81531980 Curitiba, Parana, Brazil
[2] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[4] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
基金
巴西圣保罗研究基金会;
关键词
partial group action; partial Hopf action; crossed product; twisted partial action; PARTIAL CROSSED-PRODUCTS; ENVELOPING ACTIONS; ALGEBRAS; (CO)ACTIONS;
D O I
10.1017/S1446788715000774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we review some properties of twisted partial actions of Hopf algebras on unital algebras and give necessary and sufficient conditions for a twisted partial action to have a globalization. We also elaborate a series of examples.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [41] Representation dimension for Hopf actions
    JuXiang Sun
    GongXiang Liu
    Science China Mathematics, 2012, 55 : 695 - 700
  • [42] Action of Hopf on the twisted modular Hecke operator
    Banerjee, Abhishek
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (04) : 1155 - 1173
  • [43] POINTED HOPF ACTIONS ON FIELDS, I
    Etingof, Pavel
    Walton, Chelsea
    TRANSFORMATION GROUPS, 2015, 20 (04) : 985 - 1013
  • [44] Braided Hochschild cohomology and Hopf actions
    Negron, Cris
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (01) : 1 - 33
  • [45] Partial corepresentations of Hopf algebras
    Alves, Marcelo Muniz S.
    Batista, Eliezer
    Castro, Felipe
    Quadros, Glauber
    Vercruysse, Joost
    JOURNAL OF ALGEBRA, 2021, 577 : 74 - 135
  • [46] Recent developments around partial actions
    Dokuchaev, M.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 195 - 247
  • [47] The dynamics of partial inverse semigroup actions
    Cordeiro, Luiz Gustavo
    Beuter, Viviane
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (03) : 917 - 957
  • [48] PARTIAL ACTIONS OF C*-QUANTUM GROUPS
    Kraken, Franziska
    Quast, Paula
    Timmermann, Thomas
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 843 - 872
  • [49] WHEN IS A CROSSED PRODUCT BY A TWISTED PARTIAL ACTION AZUMAYA?
    Paques, Antonio
    Sant'Ana, Alveri
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (03) : 1093 - 1103
  • [50] Goldie twisted partial skew power series rings
    Cortes, Wagner
    Ruiz, Simone
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (08)