Deep-learning synthesized pseudo-CT for MR high-resolution pediatric cranial bone imaging (MR-HiPCB)

被引:12
作者
Boroojeni, Parna Eshraghi [1 ]
Chen, Yasheng [2 ]
Commean, Paul K. [3 ]
Eldeniz, Cihat [3 ]
Skolnick, Gary B. [4 ]
Merrill, Corinne [4 ]
Patel, Kamlesh B. [4 ]
An, Hongyu [1 ,2 ,3 ]
机构
[1] Washington Univ, Dept Biomed Engn, St Louis, MO 63110 USA
[2] Washington Univ, Dept Neurol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[4] Washington Univ, Div Plast & Reconstruct Surg, St Louis, MO 63110 USA
基金
美国国家卫生研究院;
关键词
cranial bone imaging; craniosynostosis; deep learning; head trauma; MRI; pseudo-CT; TRAUMATIC BRAIN-INJURY; ATTENUATION CORRECTION; COMPUTED-TOMOGRAPHY; BLACK BONE; RADIATION-EXPOSURE; 3-DIMENSIONAL RECONSTRUCTION; CRANIOFACIAL SKELETON; CHILDREN; SEGMENTATION; PET/MRI;
D O I
10.1002/mrm.29356
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose CT is routinely used to detect cranial abnormalities in pediatric patients with head trauma or craniosynostosis. This study aimed to develop a deep learning method to synthesize pseudo-CT (pCT) images for MR high-resolution pediatric cranial bone imaging to eliminating ionizing radiation from CT. Methods 3D golden-angle stack-of-stars MRI were obtained from 44 pediatric participants. Two patch-based residual UNets were trained using paired MR and CT patches randomly selected from the whole head (NetWH) or in the vicinity of bone, fractures/sutures, or air (NetBA) to synthesize pCT. A third residual UNet was trained to generate a binary brain mask using only MRI. The pCT images from NetWH (pCT(NetWH)) in the brain area and NetBA (pCT(NetBA)) in the nonbrain area were combined to generate pCT(Com). A manual processing method using inverted MR images was also employed for comparison. Results pCT(Com) (68.01 +/- 14.83 HU) had significantly smaller mean absolute errors (MAEs) than pCT(NetWH) (82.58 +/- 16.98 HU, P < 0.0001) and pCT(NetBA) (91.32 +/- 17.2 HU, P < 0.0001) in the whole head. Within cranial bone, the MAE of pCT(Com) (227.92 +/- 46.88 HU) was significantly lower than pCT(NetWH) (287.85 +/- 59.46 HU, P < 0.0001) but similar to pCT(NetBA) (230.20 +/- 46.17 HU). Dice similarity coefficient of the segmented bone was significantly higher in pCT(Com) (0.90 +/- 0.02) than in pCT(NetWH) (0.86 +/- 0.04, P < 0.0001), pCT(NetBA) (0.88 +/- 0.03, P < 0.0001), and inverted MR (0.71 +/- 0.09, P < 0.0001). Dice similarity coefficient from pCT(Com) demonstrated significantly reduced age dependence than inverted MRI. Furthermore, pCT(Com) provided excellent suture and fracture visibility comparable to CT. Conclusion MR high-resolution pediatric cranial bone imaging may facilitate the clinical translation of a radiation-free MR cranial bone imaging method for pediatric patients.
引用
收藏
页码:2285 / 2297
页数:13
相关论文
共 56 条
[1]   Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI [J].
Arabi, Hossein ;
Zeng, Guodong ;
Zheng, Guoyan ;
Zaidi, Habib .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) :2746-2759
[2]   Attenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: Comparison with Atlas, ZTE and CT based attenuation correction [J].
Blanc-Durand, Paul ;
Khalife, Maya ;
Sgard, Brian ;
Kaushik, Sandeep ;
Soret, Marine ;
Tiss, Amal ;
El Fakhri, Georges ;
Habert, Marie-Odile ;
Wiesinger, Florian ;
Kas, Aurelie .
PLOS ONE, 2019, 14 (10)
[3]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[4]   Estimates of the cancer risks from pediatric CT radiation are not theoretical: Comment on "Point/Counterpoint: In x-ray computed tomography, technique factors should be selected appropriate to size. Against the Proposition" [Med. Phys. 28, 1543-1545 (2001)] [J].
Brenner, DJ ;
Elliston, CD ;
Hall, EJ ;
Berdon, WE .
MEDICAL PHYSICS, 2001, 28 (11) :2387-2388
[5]   Use of CT for Head Trauma: 2007-2015 [J].
Burstein, Brett ;
Upton, Julia E. M. ;
Terra, Heloisa Fuzaro ;
Neuman, Mark I. .
PEDIATRICS, 2018, 142 (04)
[6]   Deep learning-based T1-enhanced selection of linear attenuation coefficients (DL-TESLA) for PET/MR attenuation correction in dementia neuroimaging [J].
Chen, Yasheng ;
Ying, Chunwei ;
Binkley, Michael M. ;
Juttukonda, Meher R. ;
Flores, Shaney ;
Laforest, Richard ;
Benzinger, Tammie L. S. ;
An, Hongyu .
MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (01) :499-513
[7]   Probabilistic Air Segmentation and Sparse Regression Estimated Pseudo CT for PET/MR Attenuation Correction [J].
Chen, Yasheng ;
Juttukonda, Meher ;
Su, Yi ;
Benzinger, Tammie ;
Rubin, Brian G. ;
Lee, Yueh Z. ;
Lin, Weili ;
Shen, Dinggang ;
Lalush, David ;
An, Hongyu .
RADIOLOGY, 2015, 275 (02) :562-569
[8]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[9]   Use of Medical Imaging Procedures With Ionizing Radiation in Children A Population-Based Study [J].
Dorfman, Adam L. ;
Fazel, Reza ;
Einstein, Andrew J. ;
Applegate, Kimberly E. ;
Krumholz, Harlan M. ;
Wang, Yongfei ;
Christodoulou, Emmanuel ;
Chen, Jersey ;
Sanchez, Ramon ;
Nallamothu, Brahmajee K. .
ARCHIVES OF PEDIATRICS & ADOLESCENT MEDICINE, 2011, 165 (05) :458-464
[10]   Does the Addition of a "Black Bone" Sequence to a Fast Multisequence Trauma MR Protocol Allow MRI to Replace CT after Traumatic Brain Injury in Children? [J].
Dremmen, M. H. G. ;
Wagner, M. W. ;
Bosemani, T. ;
Tekes, A. ;
Agostino, D. ;
Day, E. ;
Soares, B. P. ;
Huisman, T. A. G. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (11) :2187-2192