Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction

被引:72
作者
Wang, Zelin [1 ]
Ke, Xiaoxing [1 ]
Zhou, Kailing [2 ]
Xu, Xiaolong [3 ]
Jin, Yuhong [2 ]
Wang, Hao [2 ]
Sui, Manling [1 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Microstruct & Properties Solids, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Fac Mat & Mfg, Coll Mat Sci, Beijing 100124, Peoples R China
[3] Qilu Univ Technol, Sch Mat Sci & Engn, Shandong Acad Sci, Jinan 250353, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; CARBON MATERIALS; EFFICIENT; ELECTROCATALYSTS; NANOPARTICLES; EVOLUTION; DYNAMICS; ENERGY;
D O I
10.1039/d1ta03036a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zeolitic imidazolate frameworks (ZIF)-derived catalysts are being extensively investigated for the oxygen reduction reaction (ORR) due to its low cost, high tunability, and facile fabrication. However, an understanding of the critical role of temperature during pyrolysis remains lacking, which makes the design of catalysts by thermal activation rely on empirical engineering. In this work, we use ZIF-67 as a model material to study the impact of temperature on microstructural evolution by in situ transmission electron microscopy. Microstructural features of cobalt precipitation, nitrogen loss, and porous carbon support formation were investigated and semi-quantified. A tradeoff between the microstructural features is revealed and confirmed by the ORR performance. By understanding the temperature-microstructure-ORR performance relationship, we further design a simple low-temperature pyrolysis strategy and achieve outstanding ORR activity. Although demonstrated on ZIF-67, the critical role of temperature as disclosed by this work is beneficial for all ZIF-related materials to further boost ORR performance. Meanwhile, our one-step strategy is easy to implement and allows for scaling up for industrial application.
引用
收藏
页码:18515 / 18525
页数:11
相关论文
共 56 条
[1]   Atomic Configuration of Nitrogen-Doped Single-Walled Carbon Nanotubes [J].
Arenal, Raul ;
March, Katia ;
Ewels, Chris P. ;
Rocquefelte, Xavier ;
Kociak, Mathieu ;
Loiseau, Annick ;
Stephan, Odile .
NANO LETTERS, 2014, 14 (10) :5509-5516
[2]   THERMAL AND STRUCTURAL STUDY OF THE HCP-TO-FCC TRANSFORMATION IN COBALT [J].
CARDELLINI, F ;
MAZZONE, G .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1993, 67 (06) :1289-1300
[3]   Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions [J].
Chen, Binling ;
Li, Rong ;
Ma, Guiping ;
Gou, Xinglong ;
Zhu, Yanqiu ;
Xia, Yongde .
NANOSCALE, 2015, 7 (48) :20674-20684
[4]   Metal-Free Catalysts for Oxygen Reduction Reaction [J].
Dai, Liming ;
Xue, Yuhua ;
Qu, Liangti ;
Choi, Hyun-Jung ;
Baek, Jong-Beom .
CHEMICAL REVIEWS, 2015, 115 (11) :4823-4892
[5]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[6]   Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (07) :2100-2104
[7]   Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR [J].
Ding, Danni ;
Shen, Kui ;
Chen, Xiaodong ;
Chen, Huirong ;
Chen, Junying ;
Fan, Ting ;
Wu, Rongfang ;
Li, Yingwei .
ACS CATALYSIS, 2018, 8 (09) :7879-7888
[8]   Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction [J].
Ding, Wei ;
Wei, Zidong ;
Chen, Siguo ;
Qi, Xueqiang ;
Yang, Tao ;
Hu, Jinsong ;
Wang, Dong ;
Wan, Li-Jun ;
Alvi, Shahnaz Fatima ;
Li, Li .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) :11755-11759
[9]   Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction [J].
Du, Jian ;
Li, Fei ;
Sun, Licheng .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (04) :2663-2695
[10]   N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction [J].
Du, Nana ;
Wang, Chengming ;
Long, Ran ;
Xiong, Yujie .
NANO RESEARCH, 2017, 10 (09) :3228-3237