Numerical integration of implicit functions for the initialization of the VOF function

被引:23
作者
Bna, S. [1 ]
Manservisi, S. [1 ]
Scardovelli, R. [1 ]
Yecko, P. [2 ]
Zaleski, S. [3 ,4 ]
机构
[1] Univ Bologna, DIN Lab Montecuccolino, I-40136 Bologna, Italy
[2] Montclair Univ, Dept Math, Montclair, NJ USA
[3] Univ Paris 06, Inst Jean Rand dAlembert IJLRdA, UMR 7190, F-75252 Paris 05, France
[4] CNRS, F-75252 Paris 05, France
关键词
Implicit functions; Numerical integration; VOF function; SURFACE;
D O I
10.1016/j.compfluid.2014.04.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A numerical method of initializing cell volume fraction demarcated by implicitly defined fluid interfaces is presented. Each cell of the computational domain is examined for the presence of the reference phase. When a cell is not full or empty, limits are found that allow volume fraction to be computed by numerical integration. The method enlists a number of algorithms including root finding and minimum search on an oriented segment, a preconditioned conjugate gradient minimum search on a cell face and a double Gauss-Legendre integration with a variable number of nodes, among others. Practical multi-phase fluid examples in two- and three-dimensions are presented to demonstrate the accuracy and robustness of the method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 14 条
  • [1] [Anonymous], 1994, INTRO CONJUGATE GRAD
  • [2] Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial-value problem
    Bague, Anne
    Fuster, Daniel
    Popinet, Stephane
    Scardovelli, Ruben
    Zaleski, Stephane
    [J]. PHYSICS OF FLUIDS, 2010, 22 (09)
  • [3] On the properties and limitations of the height function method in two-dimensional Cartesian geometry
    Bornia, G.
    Cervone, A.
    Manservisi, S.
    Scardovelli, R.
    Zaleski, S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 851 - 862
  • [4] Brent R.P., 2002, ALGORITHMS MINIMIZAT
  • [5] Estimating curvature from volume fractions
    Cummins, SJ
    Francois, MM
    Kothe, DB
    [J]. COMPUTERS & STRUCTURES, 2005, 83 (6-7) : 425 - 434
  • [6] Evans M. J., 2000, Approximating Integrals via Monte Carlo and Deterministic Methods
  • [7] CUBA - a library for multidimensional numerical integration
    Hahn, T
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2005, 168 (02) : 78 - 95
  • [8] POLAK E, 1969, REV FR INFORM RECH O, V3, P35
  • [9] An accurate adaptive solver for surface-tension-driven interfacial flows
    Popinet, Stephane
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) : 5838 - 5866
  • [10] Press W.H., 1992, Numerical Recipes in C: The Art of Scientific Computing, Vsecond