Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films

被引:84
作者
Cheng, Kenneth C. K. [1 ,2 ,7 ]
Bedolla-Pantoja, Marco A. [3 ]
Kim, Young-Ki [3 ,4 ]
Gregory, Jason V. [1 ,5 ]
Xie, Fan [1 ,5 ]
de France, Alexander [1 ,5 ]
Hussal, Christoph [6 ]
Sun, Kai [2 ]
Abbott, Nicholas L. [3 ,4 ]
Lahann, Joerg [1 ,2 ,5 ,6 ]
机构
[1] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[4] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14850 USA
[5] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[6] Karlsruhe Inst Technol, Inst Funct Interfaces, Karlsruhe, Germany
[7] IBM Res, Albany, NY USA
关键词
DEPOSITION; TRANSITION; SURFACES;
D O I
10.1126/science.aar8449
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extrusion, electrospinning, and microdrawing are widely used to create fibrous polymer mats, but these approaches offer limited access to oriented arrays of nanometer-scale fibers with controlled size, shape, and lateral organization. We show that chemical vapor polymerization can be performed on surfaces coated with thin films of liquid crystals to synthesize organized assemblies of end-attached polymer nanofibers. The process uses low concentrations of radical monomers formed initially in the vapor phase and then diffused into the liquid-crystal template. This minimizes monomer-induced changes to the liquid-crystal phase and enables access to nanofiber arrays with complex yet precisely defined structures and compositions. The nanofiber arrays permit tailoring of a wide range of functional properties, including adhesion that depends on nanofiber chirality.
引用
收藏
页码:804 / +
页数:30
相关论文
共 33 条
[1]   Helical Polyacetylene: Asymmetric Polymerization in a Chiral Liquid-Crystal Field [J].
Akagi, Kazuo .
CHEMICAL REVIEWS, 2009, 109 (11) :5354-5401
[2]   Adhesive force of a single gecko foot-hair [J].
Autumn, K ;
Liang, YA ;
Hsieh, ST ;
Zesch, W ;
Chan, WP ;
Kenny, TW ;
Fearing, R ;
Full, RJ .
NATURE, 2000, 405 (6787) :681-+
[3]   Polylutidines: Multifunctional Surfaces through Vapor-Based Polymerization of Substituted Pyridinophanes [J].
Bally-Le Gall, Florence ;
Hussal, Christoph ;
Kramer, Joshua ;
Cheng, Kenneth ;
Kumar, Ramya ;
Eyster, Thomas ;
Baek, Amy ;
Trouillet, Vanessa ;
Nieger, Martin ;
Braese, Stefan ;
Lahann, Joerg .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (54) :13342-+
[4]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[5]   Chemical and biological sensing using liquid crystals [J].
Carlton, Rebecca J. ;
Hunter, Jacob T. ;
Miller, Daniel S. ;
Abbasi, Reza ;
Mushenheim, Peter C. ;
Tan, Lie Na ;
Abbott, Nicholas L. .
LIQUID CRYSTALS REVIEWS, 2013, 1 (01) :29-51
[6]  
Castles F, 2012, NAT MATER, V11, P599, DOI [10.1038/NMAT3330, 10.1038/nmat3330]
[7]   Anchoring energies of liquid crystals measured on surfaces presenting oligopeptides [J].
Clare, Brian H. ;
Guzman, Orlando ;
de Pablo, Juan ;
Abbott, Nicholas L. .
LANGMUIR, 2006, 22 (18) :7776-7782
[8]  
de Gennes P. G., 1993, The Physics of Liquid Crystals, V2nd ed
[9]  
Demus D., 1998, HDB LIQUID CRYSTALS, V2
[10]  
Deng XP, 2014, J APPL POLYM SCI, V131, DOI [10.1002/app.40315, 10.1002/APP.40315]