Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling

被引:200
作者
Tesche, Christian [1 ,6 ]
De Cecco, Carlo N. [1 ,7 ]
Baumann, Stefan [1 ,8 ]
Renker, Matthias [1 ,9 ]
McLaurin, Tindal W. [1 ]
Duguay, Taylor M. [1 ]
Bayer, Richard R., II [1 ,2 ]
Steinberg, Daniel H. [2 ]
Grant, Katharine L. [3 ]
Canstein, Christian [3 ]
Schwemmer, Chris [3 ]
Schoebinger, Max [3 ]
Itu, Lucian M. [4 ]
Rapaka, Saikiran [5 ]
Sharma, Puneet [5 ]
Schoepf, U. Joseph [1 ,2 ]
机构
[1] Med Univ South Carolina, Dept Radiol & Radiol Sci, Div Cardiovasc Imaging, Ashley River Tower,25 Courtenay Dr, Charleston, SC 29425 USA
[2] Med Univ South Carolina, Dept Med, Div Cardiol, Ashley River Tower,25 Courtenay Dr, Charleston, SC 29425 USA
[3] Siemens Healthcare GmbH, Dept Computed Tomog Res & Dev, Forchheim, Germany
[4] Siemens SRL, Dept Corp Technol, Brasov, Romania
[5] Siemens Healthcare, Dept Med Imaging Technol, Princeton, NJ USA
[6] Heart Ctr Munich Bogenhausen, Dept Cardiol & Intens Care Med, Munich, Germany
[7] Sapienza Univ Rome, Dept Radiol Sci Oncol & Pathol, Rome, Italy
[8] Heidelberg Univ, Univ Med Ctr Mannheim UMM, Fac Med Mannheim, Dept Med 1, Mannheim, Germany
[9] Kerckhoff Heart Ctr, Dept Cardiol, Bad Nauheim, Germany
关键词
COMPUTED-TOMOGRAPHY ANGIOGRAPHY; DIAGNOSTIC PERFORMANCE; HEMODYNAMIC SIGNIFICANCE; BLOOD-FLOW; INTERMEDIATE; GUIDELINES; STANDARD; SOCIETY; LESIONS;
D O I
10.1148/radiol.2018171291
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To compare two technical approaches for determination of coronary computed tomography (CT) angiography-derived fractional flow reserve (FFR)-FFR derived from coronary CT angiography based on computational fluid dynamics (hereafter, FFRCFD) and FFR derived from coronary CT angiography based on machine learning algorithm (hereafter, FFRML)-against coronary CT angiography and quantitative coronary angiography (QCA). Materials and Methods: A total of 85 patients (mean age, 62 years 6 +/- 11 [standard deviation]; 62% men) who had undergone coronary CT angiography followed by invasive FFR were included in this single-center retrospective study. FFR values were derived onsite from coronary CT angiography data sets by using both FFRCFD and FFRML. The performance of both techniques for detecting lesion-specific ischemia was compared against visual stenosis grading at coronary CT angiography, QCA, and invasive FFR as the reference standard. Results: On a per-lesion and per-patient level, FFRML showed a sensitivity of 79% and 90% and a specificity of 94% and 95%, respectively, for detecting lesion-specific ischemia. Meanwhile, FFRCFD resulted in a sensitivity of 79% and 89% and a specificity of 93% and 93%, respectively, on a per-lesion and per-patient basis (P=.86 and P=.92). On a per-lesion level, the area under the receiver operating characteristics curve (AUC) of 0.89 for FFRML and 0.89 for FFRCFD showed significantly higher discriminatory power for detecting lesion-specific ischemia compared with that of coronary CT angiography (AUC, 0.61) and QCA (AUC, 0.69) (all P<.0001). Also, on a per-patient level, FFRML (AUC, 0.91) and FFRCFD (AUC, 0.91) performed significantly better than did coronary CT angiography (AUC, 0.65) and QCA (AUC, 0.68) (all P<.0001). Processing time for FFRML was significantly shorter compared with that of FFRCFD (40.5 minutes 6 6.3 vs 43.4 minutes 6 +/- 7.1; P=.042). Conclusion: The FFRML algorithm performs equally in detecting lesion-specific ischemia when compared with the FFRCFD approach. Both methods outperform accuracy of coronary CT angiography and QCA in the detection of flow-limiting stenosis. (c) RSNA, 2018
引用
收藏
页码:64 / 72
页数:9
相关论文
共 26 条
[1]  
[Anonymous], J APPL PHYSL
[2]   Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements - initial experience with a novel physician-driven algorithm [J].
Baumann, Stefan ;
Wang, Rui ;
Schoepf, U. Joseph ;
Steinberg, Daniel H. ;
Spearman, James V. ;
Bayer, Richard R., II ;
Hamm, Christian W. ;
Renker, Matthias .
EUROPEAN RADIOLOGY, 2015, 25 (04) :1201-1207
[3]  
Benton Jr SM, 2017, J THORAC IMAGING
[4]   Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm [J].
Coenen, Adriaan ;
Lubbers, Marisa M. ;
Kurata, Akira ;
Kono, Atsushi ;
Dedic, Admir ;
Chelu, Raluca G. ;
Dijkshoorn, Marcel L. ;
Gijsen, Frank J. ;
Ouhlous, Mohamed ;
van Geuns, Robert-Jan M. ;
Nieman, Koen .
RADIOLOGY, 2015, 274 (03) :674-683
[5]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[6]   Diagnostic performance of quantitative coronary computed tomography angiography and quantitative coronary angiography to predict hemodynamic significance of intermediate-grade stenoses [J].
Ghekiere, Olivier ;
Dewilde, Willem ;
Bellekens, Michel ;
Hoa, Denis ;
Couvreur, Thierry ;
Djekic, Julien ;
Coolen, Tim ;
Mancini, Isabelle ;
Vanhoenacker, Piet K. ;
Dendale, Paul ;
Nchimi, Alain .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2015, 31 (08) :1651-1661
[7]   Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree [J].
Itu, Lucian ;
Sharma, Puneet ;
Kamen, Ali ;
Suciu, Constantin ;
Comaniciu, Dorin .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2013, 29 (12) :1428-1455
[8]  
Itu L, 2013, IEEE ENG MED BIO, P727, DOI 10.1109/EMBC.2013.6609603
[9]   Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries [J].
Kim, H. J. ;
Vignon-Clementel, I. E. ;
Coogan, J. S. ;
Figueroa, C. A. ;
Jansen, K. E. ;
Taylor, C. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2010, 38 (10) :3195-3209
[10]   Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms Results From the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) Study [J].
Koo, Bon-Kwon ;
Erglis, Andrejs ;
Doh, Joon-Hyung ;
Daniels, David V. ;
Jegere, Sanda ;
Kim, Hyo-Soo ;
Dunning, Allison ;
DeFrance, Tony ;
Lansky, Alexandra ;
Leipsic, Jonathan ;
Min, James K. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 58 (19) :1989-1997