ON A GENERALIZED CAHN-HILLIARD MODEL WITH p-LAPLACIAN

被引:0
作者
Folino, Raffaele [1 ]
Fernando Lopez-Rios, Luis [1 ]
Strani, Marta [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Matemat & Mecan, Inst Invest Matemat Aplicadas & Sistemas, Circuito Escolar S-N,Ciudad Univ, Cd Mx 04510, Mexico
[2] Univ CaFoscari Venezia Mestre, Dipartimento Sci Molecolari & Nanosistemi, Campus Sci Via Torino 155, I-30170 Venice, Italy
关键词
QUASI-LINEAR MODEL; METASTABLE PATTERNS; STATIONARY SOLUTIONS; SLOW DYNAMICS; EQUATION; MOTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Cahn-Hilliard model in a bounded interval of the real line with no-flux boundary conditions is considered. The label "generalized" refers to the fact that we consider a concentration dependent mobility, the p-Laplace operator with p > 1 and a double well potential of the form F(u) = 1/2 theta vertical bar 1 - u(2)vertical bar(theta) with theta > 1; these terms replace, respectively, the constant mobility, the linear Laplace operator and the C-2 potential satisfying F ''(+/- 1) > 0, which are typical of the standard Cahn-Hilliard model. After investigating the associated stationary problem and highlighting the differences with the standard results, we focus the attention on the long time dynamics of solutions when theta >= p > 1. In the critical case theta = p > 1, we prove exponentially slow motion of profiles with a transition layer structure, thus extending the well know results of the standard model, where theta = p = 2; conversely, in the supercritical case theta > p > 1, we prove algebraic slow motion of layered profiles.
引用
收藏
页码:647 / 682
页数:36
相关论文
共 30 条
[1]   SLOW MOTION FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION [J].
ALIKAKOS, N ;
BATES, PW ;
FUSCO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :81-135
[2]   METASTABLE PATTERNS FOR THE CAHN-HILLIARD EQUATION .1. [J].
BATES, PW ;
XUN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 111 (02) :421-457
[3]   METASTABLE PATTERNS FOR THE CAHN-HILLIARD EQUATION .2. LAYER DYNAMICS AND SLOW INVARIANT MANIFOLD [J].
BATES, PW ;
XUN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (01) :165-216
[4]  
Benedikt J, 2018, ELECTRON J DIFFER EQ
[5]   EXACT SOLVABILITY OF THE MULLINS NONLINEAR DIFFUSION-MODEL OF GROOVE DEVELOPMENT [J].
BROADBRIDGE, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) :1648-1652
[6]   ON THE SLOWNESS OF PHASE-BOUNDARY MOTION IN ONE SPACE DIMENSION [J].
BRONSARD, L ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :983-997
[7]   ON THE SLOW DYNAMICS FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION [J].
BRONSARD, L ;
HILHORST, D .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 439 (1907) :669-682
[8]  
Cahn J.W., 1996, Eur. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
[9]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[10]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267