SPATIAL ENSEMBLE KERNEL LEARNING FOR SCENE CLASSIFICATION

被引:0
|
作者
Zhang, Lei [1 ]
Zhen, Xiantong [2 ]
Zhang, Qiujing [1 ]
机构
[1] Guangdong Univ Petrochem Technol, Coll Comp & Elect Informat, Maoming, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2018年
基金
美国国家科学基金会;
关键词
Spatial Ensemble Kernel; CNNs; Fourier Feature Embedding; Spatial Pyramid Kernel; Scene Classification;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Scene recognition is one of the most important tasks in computer vision. Apart from appearance, spatial layout carries the crucial cue for discriminative representation. In this paper, we propose spatial ensemble kernel (SEK) learning, which enables fusion of multi-scale spatial information to achieve compact while discriminative representation of scenes. Based on the spatial pyramid, SEK combines the CNN features in each level of the pyramid in an ensemble and fuse them by kernels. By kernel approximation, we achieve Fourier feature embedding of CNN features in each scale, which establishes a nonlinear layer of the neural network with a cosine activation function. The parameters of the nonlinear layer can be learned jointly in one single optimization framework by supervised learning, which enables compact and discriminative feature representations. We show the effectiveness of the proposed SEK on two recent scene benchmark datasets, i.e., MIT indoor and SUN 397. The propose SEK produces high performance on two datasets which are competitive to state-of-the-art algorithms.
引用
收藏
页码:1303 / 1307
页数:5
相关论文
共 50 条
  • [31] Transfer Learning Based Natural Scene Classification for Scene Understanding by Intelligent Machines
    Surendran, Ranjini
    Anitha, J.
    Angelopoulou, A.
    Kapetanios, E.
    Chausalet, T.
    Hemanth, D. Jude
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 41 - 48
  • [32] Fusing Deep Features by Kernel Collaborative Representation for Remote Sensing Scene Classification
    Chen, Xiaoning
    Ma, Mingyang
    Li, Yong
    Cheng, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12429 - 12439
  • [34] Scene classification of remote sensing image using ensemble convolutional neural network
    Yu D.
    Zhang B.
    Zhao C.
    Guo H.
    Lu J.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (06): : 717 - 727
  • [35] AN INTROSPECTIVE LEARNING STRATEGY FOR REMOTE SENSING SCENE CLASSIFICATION
    Su, Jingran
    Wang, Qi
    Chen, Shangdong
    Li, Xuelong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 533 - 536
  • [36] Federated Learning Approach for Remote Sensing Scene Classification
    Ben Youssef, Belgacem
    Alhmidi, Lamyaa
    Bazi, Yakoub
    Zuair, Mansour
    REMOTE SENSING, 2024, 16 (12)
  • [37] Learning Object-to-Class Kernels for Scene Classification
    Zhang, Lei
    Zhen, Xiantong
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3241 - 3253
  • [38] Continual Learning Approach for Remote Sensing Scene Classification
    Ammour, Nassim
    Bazi, Yakoub
    Alhichri, Haikel
    Alajlan, Naif
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [39] Continual Learning for Remote Sensing Image Scene Classification With Prompt Learning
    Zhao, Ling
    Xu, Linrui
    Zhao, Li
    Zhang, Xiaoling
    Wang, Yuhan
    Ye, Dingqi
    Peng, Jian
    Li, Haifeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5
  • [40] MULTI-OBJECT SPATIAL RELATIONSHIP MODEL FOR HIGH SPATIAL RESOLUTION SCENE CLASSIFICATION
    Wu, Siqi
    Zhao, Bei
    Zhong, Yanfei
    Zhang, Liangpei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3306 - 3309