The shrinkage of alkali activated fly ash

被引:205
作者
Ma, Y. [1 ]
Ye, G. [2 ,3 ]
机构
[1] Guangzhou Univ, Guangzhou Univ Tamkang Univ Joint Res Ctr Engn St, Guangzhou 510006, Guangdong, Peoples R China
[2] Delft Univ Technol, Dept Mat & Environm, Fac Civil Engn & Geosci, Delft, Netherlands
[3] Univ Ghent, Dept Struct Engn, B-9000 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Alkali activated; Fly ash; Shrinkage; Pore size distribution; AUTOGENOUS SHRINKAGE; PORE STRUCTURE; CEMENT; GEL; MICROSTRUCTURE; STRENGTH; MICROANALYSIS; PERMEABILITY; PERFORMANCE; TECHNOLOGY;
D O I
10.1016/j.cemconres.2014.10.024
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the autogenous and drying shrinkage of alkali activated fly ash (AAFA) pastes prepared with different contents of sodium silicate solution are reported. A higher amount of both Na2O and SiO2 resulted in a larger autogenous and drying shrinkage. Although a large autogenous shrinkage was obtained during the first 1-3 days, cracking was not observed in the ellipse ring tests. In AAFA pastes, water was not a reactant, but mainly acted as a medium. The experiment results indicate that the autogenous shrinkage of AAFA is not caused by the well-known self-desiccation process that happened in cement paste, but related to the continuous reorganization and polymerization of the aluminosilicate gel structure. AAFA pastes with a larger drying shrinkage exhibited a higher weight loss. The different microstructures lead to the different drying shrinkage of these AAFA mixtures. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [41] Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage
    Li, Zhenming
    Zhang, Shizhe
    Liang, Xuhui
    Ye, Guang
    CEMENT & CONCRETE COMPOSITES, 2020, 114 (114)
  • [42] Effect of activator, curing and humidity on drying shrinkage of alkali-activated fly ash
    Hojati, Maryam
    Rajabipour, Farshad
    Radlinska, Aleksandra
    GREEN MATERIALS, 2019, 7 (02) : 71 - 83
  • [43] Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars
    Aiken, Timothy A.
    Kwasny, Jacek
    Zhou, Zuyao
    Mcpolin, Daniel
    Sha, Wei
    MRS ADVANCES, 2023, 8 (22) : 1266 - 1272
  • [44] A Low-Autogenous-Shrinkage Alkali-Activated Slag and Fly Ash Concrete
    Li, Zhenming
    Yao, Xingliang
    Chen, Yun
    Lu, Tianshi
    Ye, Guang
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [45] Temperature rise and initial shrinkage of alkali-activated fly ash cement pastes
    Shekhovtsova, Julia
    Kearsley, Elsabe P.
    Kovtun, Maxim
    ADVANCES IN CEMENT RESEARCH, 2016, 28 (01) : 3 - 12
  • [46] Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers
    Jang, J. G.
    Lee, N. K.
    Lee, H. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 50 : 169 - 176
  • [47] Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag
    Huang, Dunwen
    Yuan, Qiaoming
    Chen, Peng
    Tian, Xiang
    Peng, Hui
    JOURNAL OF BUILDING ENGINEERING, 2022, 62
  • [48] Calcium sulfoaluminate and alkali-activated fly ash cements as alternative to Portland cement: study on chemical, physical-mechanical, and durability properties of mortars with the same strength class
    Mobili, Alessandra
    Telesca, Antonio
    Marroccoli, Milena
    Tittarelli, Francesca
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 246
  • [49] Micro-mechanical properties of alkali-activated fly ash evaluated by nanoindentation
    Ma, Y.
    Ye, G.
    Hu, J.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 147 : 407 - 416
  • [50] Mechanical Properties, Microstructure, and Chloride Content of Alkali-Activated Fly Ash Paste Made with Sea Water
    Siddique, Salman
    Jang, Jeong Gook
    MATERIALS, 2020, 13 (06)