The shrinkage of alkali activated fly ash

被引:205
作者
Ma, Y. [1 ]
Ye, G. [2 ,3 ]
机构
[1] Guangzhou Univ, Guangzhou Univ Tamkang Univ Joint Res Ctr Engn St, Guangzhou 510006, Guangdong, Peoples R China
[2] Delft Univ Technol, Dept Mat & Environm, Fac Civil Engn & Geosci, Delft, Netherlands
[3] Univ Ghent, Dept Struct Engn, B-9000 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Alkali activated; Fly ash; Shrinkage; Pore size distribution; AUTOGENOUS SHRINKAGE; PORE STRUCTURE; CEMENT; GEL; MICROSTRUCTURE; STRENGTH; MICROANALYSIS; PERMEABILITY; PERFORMANCE; TECHNOLOGY;
D O I
10.1016/j.cemconres.2014.10.024
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the autogenous and drying shrinkage of alkali activated fly ash (AAFA) pastes prepared with different contents of sodium silicate solution are reported. A higher amount of both Na2O and SiO2 resulted in a larger autogenous and drying shrinkage. Although a large autogenous shrinkage was obtained during the first 1-3 days, cracking was not observed in the ellipse ring tests. In AAFA pastes, water was not a reactant, but mainly acted as a medium. The experiment results indicate that the autogenous shrinkage of AAFA is not caused by the well-known self-desiccation process that happened in cement paste, but related to the continuous reorganization and polymerization of the aluminosilicate gel structure. AAFA pastes with a larger drying shrinkage exhibited a higher weight loss. The different microstructures lead to the different drying shrinkage of these AAFA mixtures. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [1] Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages
    Lee, N. K.
    Jang, J. G.
    Lee, H. K.
    CEMENT & CONCRETE COMPOSITES, 2014, 53 : 239 - 248
  • [2] Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature
    Rodrigue, Alexandre
    Bissonnette, Benoit
    Duchesne, Josee
    Fournier, Benoit
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 15 - 23
  • [3] Effect of metakaolin on the autogenous shrinkage of alkali-activated slag-fly ash paste
    Li, Zhenming
    Liang, Xuhui
    Chen, Yun
    Ye, Guang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 278
  • [4] THE AUTOGENOUS SHRINKAGE OF ALKALI ACTIVATED FLY ASH
    Ma, Y.
    Ye, G.
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 241 - 251
  • [5] THE DRYING SHRINKAGE OF ALKALI ACTIVATED FLY ASH
    Ma, Y.
    Ye, G.
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 329 - 338
  • [6] Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate
    You, Nanqiao
    Liu, Yongchao
    Gu, Dawei
    Ozbakkaloglu, Togay
    Pan, Jinlong
    Zhang, Yamei
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 242
  • [7] Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers
    Fu, Chuanqing
    Ye, Hailong
    Zhu, Kaiqi
    Fang, Deming
    Zhou, Jianbo
    CEMENT & CONCRETE COMPOSITES, 2020, 114
  • [8] Shrinkage mitigation of alkali-activated fly ash/slag mortar by using phosphogypsum waste
    Zheng, Yong
    Xuan, Dongxing
    Shen, Bo
    Ma, Kejian
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 375
  • [9] Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete
    Ruengsillapanun, Kitipong
    Udtaranakron, Thippakorn
    Pulngern, Tawich
    Tangchirapat, Weerachart
    Jaturapitakkul, Chai
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 299
  • [10] Drying shrinkage of alkali-activated fly ash/slag blended system
    Wang, Guisheng
    Ma, Yuwei
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2018, 7 (04) : 203 - 213