The shrinkage of alkali activated fly ash

被引:204
|
作者
Ma, Y. [1 ]
Ye, G. [2 ,3 ]
机构
[1] Guangzhou Univ, Guangzhou Univ Tamkang Univ Joint Res Ctr Engn St, Guangzhou 510006, Guangdong, Peoples R China
[2] Delft Univ Technol, Dept Mat & Environm, Fac Civil Engn & Geosci, Delft, Netherlands
[3] Univ Ghent, Dept Struct Engn, B-9000 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Alkali activated; Fly ash; Shrinkage; Pore size distribution; AUTOGENOUS SHRINKAGE; PORE STRUCTURE; CEMENT; GEL; MICROSTRUCTURE; STRENGTH; MICROANALYSIS; PERMEABILITY; PERFORMANCE; TECHNOLOGY;
D O I
10.1016/j.cemconres.2014.10.024
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the autogenous and drying shrinkage of alkali activated fly ash (AAFA) pastes prepared with different contents of sodium silicate solution are reported. A higher amount of both Na2O and SiO2 resulted in a larger autogenous and drying shrinkage. Although a large autogenous shrinkage was obtained during the first 1-3 days, cracking was not observed in the ellipse ring tests. In AAFA pastes, water was not a reactant, but mainly acted as a medium. The experiment results indicate that the autogenous shrinkage of AAFA is not caused by the well-known self-desiccation process that happened in cement paste, but related to the continuous reorganization and polymerization of the aluminosilicate gel structure. AAFA pastes with a larger drying shrinkage exhibited a higher weight loss. The different microstructures lead to the different drying shrinkage of these AAFA mixtures. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [1] THE DRYING SHRINKAGE OF ALKALI ACTIVATED FLY ASH
    Ma, Y.
    Ye, G.
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 329 - 338
  • [2] THE AUTOGENOUS SHRINKAGE OF ALKALI ACTIVATED FLY ASH
    Ma, Y.
    Ye, G.
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 241 - 251
  • [3] Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete
    Ruengsillapanun, Kitipong
    Udtaranakron, Thippakorn
    Pulngern, Tawich
    Tangchirapat, Weerachart
    Jaturapitakkul, Chai
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 299
  • [4] Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes
    Li, Zhenming
    Lu, Tianshi
    Liang, Xuhui
    Dong, Hua
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2020, 135
  • [5] Drying shrinkage of alkali-activated fly ash/slag blended system
    Wang, Guisheng
    Ma, Yuwei
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2018, 7 (04) : 203 - 213
  • [6] Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars
    Aiken, Timothy A.
    Kwasny, Jacek
    Zhou, Zuyao
    Mcpolin, Daniel
    Sha, Wei
    MRS ADVANCES, 2023, 8 (22) : 1266 - 1272
  • [7] Shrinkage Performance of Fly Ash Alkali-activated Cement Based Binder Mortars
    Kheradmand, M.
    Abdollahnejad, Z.
    Pacheco-Torgal, F.
    KSCE JOURNAL OF CIVIL ENGINEERING, 2018, 22 (05) : 1854 - 1864
  • [8] Effect of activator, curing and humidity on drying shrinkage of alkali-activated fly ash
    Hojati, Maryam
    Rajabipour, Farshad
    Radlinska, Aleksandra
    GREEN MATERIALS, 2019, 7 (02) : 71 - 83
  • [9] Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag
    Huang, Dunwen
    Yuan, Qiaoming
    Chen, Peng
    Tian, Xiang
    Peng, Hui
    JOURNAL OF BUILDING ENGINEERING, 2022, 62
  • [10] Prediction of the autogenous shrinkage and microcracking of alkali-activated slag and fly ash concrete
    Li, Zhenming
    Lu, Tianshi
    Chen, Yun
    Wu, Bei
    Ye, Guang
    CEMENT & CONCRETE COMPOSITES, 2021, 117