Multi-Task Decomposition Architecture based Deep Reinforcement Learning for Obstacle Avoidance

被引:1
作者
Zhang, Wengang [1 ]
He, Cong [1 ]
Wang, Teng [1 ]
机构
[1] Southeast Univ, Dept Automat, Nanjing, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
关键词
Multi-task Decomposition Architecture; D3QN; Obstacle Avoidance; Speed Control; Orientation Control; OPTICAL-FLOW; NAVIGATION;
D O I
10.1109/CAC51589.2020.9327414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle avoidance is a basic skill of mobile robots. Currently, various Deep Reinforcement Learning (DRL) based approaches have been proposed to enable the robot to navigate in complex environments. However, these existing approaches merely employ collision-related reward to guide the learning of deep models, and thus fail to capture good domain knowledge for obstacle avoidance policy. Actually, practical applications also have strict requirements on speed and energy consumption, except for safety. In addition, the learning efficiency of the above DRL-based approaches is low or even unstable. To handle the above challenges, in this paper, we propose a Multi-task Decomposition Architecture (MDA) based Deep Reinforcement Learning for robot moving policy. This method decomposes robot motion control into two related sub-tasks, including speed control as well as orientation control, with obstacle avoidance inserted into each sub-task. Each sub-task is associated with one single reward and is solved using Dueling Double Q-learning (D3QN) algorithm. Q-values from two different sub-tasks are fused through aggregator to derive final Q-values which are used for selecting actions. Experiments indicate this low dimensional representation makes learning more effective, including better security and control over speed and direction. Moreover, robots can be widely used in new environments, even dynamic ones.
引用
收藏
页码:2735 / 2740
页数:6
相关论文
共 50 条
  • [41] A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance
    Chen, Pengzhan
    Pei, Jiean
    Lu, Weiqing
    Li, Mingzhen
    NEUROCOMPUTING, 2022, 497 : 64 - 75
  • [42] A human-like collision avoidance method for USVs based on deep reinforcement learning and velocity obstacle
    Yang, Xiaofei
    Lou, Mengmeng
    Hu, Jiabao
    Ye, Hui
    Zhu, Zhiyu
    Shen, Hao
    Xiang, Zhengrong
    Zhang, Bin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 254
  • [43] Vision-based Obstacle Avoidance Using Deep Learning
    Gaya, Joel O.
    Goncalves, Lucas T.
    Duarte, Amanda C.
    Zanchetta, Breno
    Drews-, Paulo, Jr.
    Botelho, Silvia S. C.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 7 - 12
  • [44] A Collision Avoidance Method Based on Deep Reinforcement Learning
    Feng, Shumin
    Sebastian, Bijo
    Ben-Tzvi, Pinhas
    ROBOTICS, 2021, 10 (02)
  • [45] CMADRL: cross-modal attention based deep reinforcement learning for mobile robot's obstacle avoidance
    Lu, Zhaoqing
    He, Li
    Wang, Hongwei
    Yuan, Liang
    Xiao, Wendong
    Liu, Zhening
    Chen, Yaohua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [46] Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints
    Li, Zheng
    Yuan, Shihua
    Yin, Xufeng
    Li, Xueyuan
    Tang, Shouxing
    SENSORS, 2023, 23 (02)
  • [47] Reinforcement Learning for Mobile Robot Obstacle Avoidance Under Dynamic Environments
    Huang, Liwei
    Qu, Hong
    Fu, Mingsheng
    Deng, Wu
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 441 - 453
  • [48] Reinforcement Learning with Dynamic Movement Primitives for Obstacle Avoidance
    Li, Ang
    Liu, Zhenze
    Wang, Wenrui
    Zhu, Mingchao
    Li, Yanhui
    Huo, Qi
    Dai, Ming
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [49] Path-Following and Obstacle Avoidance Control of Nonholonomic Wheeled Mobile Robot Based on Deep Reinforcement Learning
    Cheng, Xiuquan
    Zhang, Shaobo
    Cheng, Sizhu
    Xia, Qinxiang
    Zhang, Junhao
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [50] Ad Hoc-Obstacle Avoidance-Based Navigation System Using Deep Reinforcement Learning for Self-Driving Vehicles
    Manikandan, N. S.
    Kaliyaperumal, Ganesan
    Wang, Yong
    IEEE ACCESS, 2023, 11 : 92285 - 92297