Multi-Task Decomposition Architecture based Deep Reinforcement Learning for Obstacle Avoidance

被引:1
作者
Zhang, Wengang [1 ]
He, Cong [1 ]
Wang, Teng [1 ]
机构
[1] Southeast Univ, Dept Automat, Nanjing, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
关键词
Multi-task Decomposition Architecture; D3QN; Obstacle Avoidance; Speed Control; Orientation Control; OPTICAL-FLOW; NAVIGATION;
D O I
10.1109/CAC51589.2020.9327414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle avoidance is a basic skill of mobile robots. Currently, various Deep Reinforcement Learning (DRL) based approaches have been proposed to enable the robot to navigate in complex environments. However, these existing approaches merely employ collision-related reward to guide the learning of deep models, and thus fail to capture good domain knowledge for obstacle avoidance policy. Actually, practical applications also have strict requirements on speed and energy consumption, except for safety. In addition, the learning efficiency of the above DRL-based approaches is low or even unstable. To handle the above challenges, in this paper, we propose a Multi-task Decomposition Architecture (MDA) based Deep Reinforcement Learning for robot moving policy. This method decomposes robot motion control into two related sub-tasks, including speed control as well as orientation control, with obstacle avoidance inserted into each sub-task. Each sub-task is associated with one single reward and is solved using Dueling Double Q-learning (D3QN) algorithm. Q-values from two different sub-tasks are fused through aggregator to derive final Q-values which are used for selecting actions. Experiments indicate this low dimensional representation makes learning more effective, including better security and control over speed and direction. Moreover, robots can be widely used in new environments, even dynamic ones.
引用
收藏
页码:2735 / 2740
页数:6
相关论文
共 50 条
  • [31] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Prashant Bhopale
    Faruk Kazi
    Navdeep Singh
    Journal of Marine Science and Application, 2019, 18 : 228 - 238
  • [32] Real-Time Obstacle Avoidance and Pathfinding for Robot Manipulators Based on Deep Reinforcement Learning
    Hu, Jun
    Mao, Jianliang
    Zhou, Xin
    Zhang, Chuanlin
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT III, 2025, 15203 : 154 - 166
  • [33] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Bhopale, Prashant
    Kazi, Faruk
    Singh, Navdeep
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2019, 18 (02) : 228 - 238
  • [34] An obstacle avoidance method for robotic arm based on reinforcement learning
    Wu, Peng
    Su, Heng
    Dong, Hao
    Liu, Tengfei
    Li, Min
    Chen, Zhihao
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2025, 52 (01): : 9 - 17
  • [35] Real-time obstacle avoidance with deep reinforcement learning * Three-Dimensional Autonomous Obstacle Avoidance for UAV
    Yang, Songyue
    Meng, Zhijun
    Chen, Xuzhi
    Xie, Ronglei
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 324 - 329
  • [36] The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method
    Wu, Xing
    Chen, Haolei
    Chen, Changgu
    Zhong, Mingyu
    Xie, Shaorong
    Guo, Yike
    Fujita, Hamido
    KNOWLEDGE-BASED SYSTEMS, 2020, 196 (196)
  • [37] Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels
    Cheng, Yin
    Zhang, Weidong
    NEUROCOMPUTING, 2018, 272 : 63 - 73
  • [38] Collision Detection and Avoidance for Multi-UAV based on Deep Reinforcement Learning
    Wang, Guanzheng
    Liu, Zhihong
    Xiao, Kun
    Xu, Yinbo
    Yang, Lingjie
    Wang, Xiangke
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7783 - 7789
  • [39] Optimization of Obstacle Avoidance Using Reinforcement Learning
    Kominami, Keishi
    Takubo, Tomohito
    Ohara, Kenichi
    Mae, Yasushi
    Arai, Tatsuo
    2012 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2012, : 67 - 72
  • [40] UAV autonomous obstacle avoidance via causal reinforcement learning
    Sun, Tao
    Gu, Jiaojiao
    Mou, Junjie
    DISPLAYS, 2025, 87