Multi-Task Decomposition Architecture based Deep Reinforcement Learning for Obstacle Avoidance

被引:1
作者
Zhang, Wengang [1 ]
He, Cong [1 ]
Wang, Teng [1 ]
机构
[1] Southeast Univ, Dept Automat, Nanjing, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
关键词
Multi-task Decomposition Architecture; D3QN; Obstacle Avoidance; Speed Control; Orientation Control; OPTICAL-FLOW; NAVIGATION;
D O I
10.1109/CAC51589.2020.9327414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle avoidance is a basic skill of mobile robots. Currently, various Deep Reinforcement Learning (DRL) based approaches have been proposed to enable the robot to navigate in complex environments. However, these existing approaches merely employ collision-related reward to guide the learning of deep models, and thus fail to capture good domain knowledge for obstacle avoidance policy. Actually, practical applications also have strict requirements on speed and energy consumption, except for safety. In addition, the learning efficiency of the above DRL-based approaches is low or even unstable. To handle the above challenges, in this paper, we propose a Multi-task Decomposition Architecture (MDA) based Deep Reinforcement Learning for robot moving policy. This method decomposes robot motion control into two related sub-tasks, including speed control as well as orientation control, with obstacle avoidance inserted into each sub-task. Each sub-task is associated with one single reward and is solved using Dueling Double Q-learning (D3QN) algorithm. Q-values from two different sub-tasks are fused through aggregator to derive final Q-values which are used for selecting actions. Experiments indicate this low dimensional representation makes learning more effective, including better security and control over speed and direction. Moreover, robots can be widely used in new environments, even dynamic ones.
引用
收藏
页码:2735 / 2740
页数:6
相关论文
共 50 条
  • [21] Autonomous Obstacle Avoidance Algorithm for Unmanned Aerial Vehicles Based on Deep Reinforcement Learning
    Gao, Yuan
    Ren, Ling
    Shi, Tianwei
    Xu, Teng
    Ding, Jianbang
    ENGINEERING LETTERS, 2024, 32 (03) : 650 - 660
  • [22] OPTIMAL OBSTACLE AVOIDANCE STRATEGY USING DEEP REINFORCEMENT LEARNING BASED ON STEREO CAMERA
    Nguyen, Chi-Hung
    Vu, Quang-Anh
    Cong, Kim-Khol Phung
    Dang, Thai-Viet
    MM SCIENCE JOURNAL, 2024, 2024 : 7556 - 7561
  • [23] Neural networks based reinforcement learning for mobile robots obstacle avoidance
    Duguleana, Mihai
    Mogan, Gheorghe
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 62 : 104 - 115
  • [24] Globally Perceived Obstacle Avoidance for Robots Based on Virtual Twin and Deep Reinforcement Learning
    Jiang, Rongxin
    Ying, Fengkang
    Zhang, Guojing
    Xing, Yifei
    Liu, Huashan
    2023 7TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION, ICRCA, 2023, : 45 - 49
  • [25] The Multi-Dimensional Actions Control Approach for Obstacle Avoidance Based on Reinforcement Learning
    Wu, Menghao
    Gao, Yanbin
    Wang, Pengfei
    Zhang, Fan
    Liu, Zhejun
    SYMMETRY-BASEL, 2021, 13 (08):
  • [26] Obstacle avoidance planning of autonomous vehicles using deep reinforcement learning
    Qian, Yubin
    Feng, Song
    Hu, Wenhao
    Wang, Wanqiu
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (12)
  • [27] Goal-Oriented Obstacle Avoidance with Deep Reinforcement Learning in Continuous Action Space
    Cimurs, Reinis
    Lee, Jin Han
    Suh, Il Hong
    ELECTRONICS, 2020, 9 (03)
  • [28] Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning
    Bartomeu Rubí
    Bernardo Morcego
    Ramon Pérez
    Journal of Intelligent & Robotic Systems, 2021, 103
  • [29] Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning
    Rubi, Bartomeu
    Morcego, Bernardo
    Perez, Ramon
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2021, 103 (04)
  • [30] Memory-Based Deep Reinforcement Learning for Obstacle Avoidance in UAV With Limited Environment Knowledge
    Singla, Abhik
    Padakandla, Sindhu
    Bhatnagar, Shalabh
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (01) : 107 - 118