Resonant and bound states of charged defects in two-dimensional semiconductors

被引:28
作者
Aghajanian, Martik [1 ,2 ]
Schuler, Bruno [3 ]
Cochrane, Katherine A. [3 ]
Lee, Jun-Ho [3 ,4 ]
Kastl, Christoph [3 ,5 ,6 ]
Neaton, Jeffrey B. [3 ,4 ,7 ]
Weber-Bargioni, Alexander [3 ]
Mostofi, Arash A. [1 ,2 ]
Lischner, Johannes [1 ,2 ]
机构
[1] Imperial Coll London, Dept Phys, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[6] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany
[7] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
IMPURITY STATES; CONDUCTIVITY; SILICON;
D O I
10.1103/PhysRevB.101.081201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS2 using a combination of scanning tunneling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multivalley valence band structure of WS2, whereby localized states originating from the secondary valence band maximum at Gamma hybridize with continuum states from the primary valence band maximum at K/K'. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds.
引用
收藏
页数:6
相关论文
共 40 条
[1]   Surface Defects on Natural MoS2 [J].
Addou, Rafik ;
Colombo, Luigi ;
Wallace, Robert M. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (22) :11921-11929
[2]   Tuning electronic properties of transition-metal dichalcogenides via defect charge [J].
Aghajanian, Martik ;
Mostofi, Arash A. ;
Lischner, Johannes .
SCIENTIFIC REPORTS, 2018, 8
[3]   Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides [J].
Barja, Sara ;
Refaely-Abramson, Sivan ;
Schuler, Bruno ;
Qiu, Diana Y. ;
Pulkin, Artem ;
Wickenburg, Sebastian ;
Ryu, Hyejin ;
Ugeda, Miguel M. ;
Kastl, Christoph ;
Chen, Christopher ;
Hwang, Choongyu ;
Schwartzberg, Adam ;
Aloni, Shaul ;
Mo, Sung-Kwan ;
Ogletree, D. Frank ;
Crommie, Michael F. ;
Yazyev, Oleg, V ;
Louie, Steven G. ;
Neaton, Jeffrey B. ;
Weber-Bargioni, Alexander .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   ELECTRONIC IMPURITY LEVELS IN SEMICONDUCTORS [J].
BASSANI, F ;
IADONISI, G ;
PREZIOSI, B .
REPORTS ON PROGRESS IN PHYSICS, 1974, 37 (09) :1099-1210
[5]   HYDROGENIC IMPURITY STATES IN A QUANTUM WELL - A SIMPLE-MODEL [J].
BASTARD, G .
PHYSICAL REVIEW B, 1981, 24 (08) :4714-4722
[6]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/nnano.2014.25, 10.1038/NNANO.2014.25]
[7]   Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir [J].
Brotons-Gisbert, Mauro ;
Branny, Artur ;
Kumar, Santosh ;
Picard, Raphael ;
Proux, Raphael ;
Gray, Mason ;
Burch, Kenneth S. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Gerardot, Brian D. .
NATURE NANOTECHNOLOGY, 2019, 14 (05) :442-446
[8]   BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures [J].
Deslippe, Jack ;
Samsonidze, Georgy ;
Strubbe, David A. ;
Jain, Manish ;
Cohen, Marvin L. ;
Louie, Steven G. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (06) :1269-1289
[9]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[10]   The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy [J].
Gross, Leo ;
Mohn, Fabian ;
Moll, Nikolaj ;
Liljeroth, Peter ;
Meyer, Gerhard .
SCIENCE, 2009, 325 (5944) :1110-1114