Augmented proper orthogonal decomposition for problems with moving discontinuities

被引:11
|
作者
Brenner, Thomas A. [1 ]
Fontenot, Raymond L. [1 ]
Cizmas, Paul G. A. [1 ]
O'Brien, Thomas J. [2 ]
Breault, Ronald W. [2 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[2] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
Proper orthogonal decomposition; Reduced-order model; Multiphase flow; Morphology; REDUCED-ORDER MODELS;
D O I
10.1016/j.powtec.2010.03.032
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A method is proposed to augment the proper orthogonal decomposition basis functions with discontinuity modes to better capture moving discontinuities in reduced-order models. Moving discontinuities can be shocks in unsteady gas flows or bubbles in multiphase flow. The method is shown to work for a simple test problem using the first-order wave equation. A method for detecting discontinuities numerically is developed using mathematical morphology. This method is shown to properly identify the edges of bubbles in multiphase flow. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
  • [31] Reduction procedure for parametrized fluid dynamics problems based on proper orthogonal decomposition and calibration
    Krasnyk, Mykhaylo
    Mangold, Michael
    Kienle, Achim
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (23) : 6238 - 6246
  • [32] An augmented subspace based adaptive proper orthogonal decomposition method for time dependent partial differential equations
    Dai, Xiaoying
    Hu, Miao
    Xin, Jack
    Zhou, Aihui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 514
  • [33] Comparison of two techniques for implementing the proper orthogonal decomposition method in damage detection problems
    Joyner, ML
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (5-6) : 553 - 571
  • [34] Reduced order model analysis method via proper orthogonal decomposition for nonlinear transient heat conduction problems
    Liang Yu
    Zheng BaoJing
    Gao XiaoWei
    Wu ZeYan
    Wang Feng
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (12)
  • [35] Efficient uncertainty quantification of CFD problems by combination of proper orthogonal decomposition and compressed sensing
    Mohammadi, Arash
    Shimoyama, Koji
    Karimi, Mohamad Sadeq
    Raisee, Mehrdad
    APPLIED MATHEMATICAL MODELLING, 2021, 94 : 187 - 225
  • [36] A proper orthogonal decomposition method for nonlinear flows with deforming meshes
    Freno, Brian A.
    Cizmas, Paul G. A.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2014, 50 : 145 - 159
  • [37] On an inexact gradient method using Proper Orthogonal Decomposition for parabolic optimal control problems
    Christian Jörres
    Georg Vossen
    Michael Herty
    Computational Optimization and Applications, 2013, 55 : 459 - 468
  • [38] A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems
    Zhang, Xiaohua
    Xiang, Hui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 84 : 729 - 739
  • [39] A Simple Proper Orthogonal Decomposition Method for von Karman Plate undergoing Supersonic Flow
    Xie, Dan
    Xu, Min
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 93 (05): : 377 - 409
  • [40] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    MULTISCALE MODELING & SIMULATION, 2013, 11 (02) : 522 - 544