Augmented proper orthogonal decomposition for problems with moving discontinuities

被引:11
|
作者
Brenner, Thomas A. [1 ]
Fontenot, Raymond L. [1 ]
Cizmas, Paul G. A. [1 ]
O'Brien, Thomas J. [2 ]
Breault, Ronald W. [2 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[2] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
Proper orthogonal decomposition; Reduced-order model; Multiphase flow; Morphology; REDUCED-ORDER MODELS;
D O I
10.1016/j.powtec.2010.03.032
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A method is proposed to augment the proper orthogonal decomposition basis functions with discontinuity modes to better capture moving discontinuities in reduced-order models. Moving discontinuities can be shocks in unsteady gas flows or bubbles in multiphase flow. The method is shown to work for a simple test problem using the first-order wave equation. A method for detecting discontinuities numerically is developed using mathematical morphology. This method is shown to properly identify the edges of bubbles in multiphase flow. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
  • [21] Proper orthogonal decomposition for optimality systems
    Kunisch, Karl
    Volkwein, Stefan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01): : 1 - 23
  • [22] Proper orthogonal decomposition and its applications
    Sanghi, Sanjeev
    Hasan, Nadeem
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2011, 6 (01) : 120 - 128
  • [23] Artificial viscosity proper orthogonal decomposition
    Borggaard, Jeff
    Iliescu, Traian
    Wang, Zhu
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 269 - 279
  • [24] HIERARCHICAL APPROXIMATE PROPER ORTHOGONAL DECOMPOSITION
    Himpe, Christian
    Leibner, Tobias
    Rave, Stephan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) : A3267 - A3292
  • [25] Proper orthogonal decomposition based simultaneous approach for solving PDE-constrained optimal control problems
    Zhu, Jie
    Chen, Weifeng
    JOURNAL OF PROCESS CONTROL, 2025, 148
  • [26] ISOGEOMETRIC ANALYSIS AND PROPER ORTHOGONAL DECOMPOSITION FOR THE ACOUSTIC WAVE EQUATION
    Zhu, Shengfeng
    Dede, Luca
    Quarteroni, Alfio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04): : 1197 - 1221
  • [27] Fast Solution of High Stochastic Dimensional EM Problems Using Proper Orthogonal Decomposition
    Gladwin, K. T. Jos
    Vinoy, K. J.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (06) : 483 - 486
  • [28] A comparison of numerical and semi-analytical proper orthogonal decomposition methods for a fluttering plate
    Xie, Dan
    Xu, Min
    NONLINEAR DYNAMICS, 2015, 79 (03) : 1971 - 1989
  • [29] A scheme for comprehensive computational cost reduction in proper orthogonal decomposition
    Singh, Satyavir
    Bazaz, M. Abid
    Nahvi, Shahkar Ahmad
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2018, 69 (04): : 279 - 285
  • [30] On an inexact gradient method using Proper Orthogonal Decomposition for parabolic optimal control problems
    Joerres, Christian
    Vossen, Georg
    Herty, Michael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (02) : 459 - 468