Stability of Superdiffusion in Nearly Integrable Spin Chains

被引:52
作者
De Nardis, Jacopo [1 ]
Gopalakrishnan, Sarang [2 ]
Vasseur, Romain [3 ]
Ware, Brayden [3 ]
机构
[1] CY Cergy Paris Univ, CNRS UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Penn State Univ, Dept Phys, University Pk, PA 16820 USA
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
关键词
TRANSPORT;
D O I
10.1103/PhysRevLett.127.057201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superdiffusive finite-temperature transport has been recently observed in a variety of integrable systems with non-Abelian global symmetries. Superdiffusion is caused by giant Goldstone-like quasiparticles stabilized by integrability. Here, we argue that these giant quasiparticles remain long-lived and give divergent contributions to the low-frequency conductivity sigma(omega), even in systems that are not perfectly integrable. We find, perturbatively, that sigma(omega) similar to omega(-1/3) for translation-invariant static perturbations that conserve energy and sigma(omega) similar to vertical bar log omega vertical bar for noisy perturbations. The (presumable) crossover to regular diffusion appears to lie beyond low-order perturbation theory. By contrast, integrability-breaking perturbations that break the non-Abelian symmetry yield conventional diffusion. Numerical evidence supports the distinction between these two classes of perturbations.
引用
收藏
页数:6
相关论文
共 87 条
[1]   Anomalous low-frequency conductivity in easy-plane XXZ spin chains [J].
Agrawal, Utkarsh ;
Gopalakrishnan, Sarang ;
Vasseur, Romain ;
Ware, Brayden .
PHYSICAL REVIEW B, 2020, 101 (22)
[2]   Operator Entanglement in Interacting Integrable Quantum Systems: The Case of the Rule 54 Chain [J].
Alba, V. ;
Dubail, J. ;
Medenjak, M. .
PHYSICAL REVIEW LETTERS, 2019, 122 (25)
[3]   Entanglement and thermodynamics after a quantum quench in integrable systems [J].
Alba, Vincenzo ;
Calabrese, Pasquale .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (30) :7947-7951
[4]   Optimized Lie-Trotter-Suzuki decompositions for two and three non-commuting terms [J].
Barthel, Thomas ;
Zhang, Yikang .
ANNALS OF PHYSICS, 2020, 418
[5]   Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion [J].
Bastianello, Alvise ;
De Luca, Andrea ;
Doyon, Benjamin ;
De Nardis, Jacopo .
PHYSICAL REVIEW LETTERS, 2020, 125 (24)
[6]   Generalized hydrodynamics with dephasing noise [J].
Bastianello, Alvise ;
De Nardis, Jacopo ;
De Luca, Andrea .
PHYSICAL REVIEW B, 2020, 102 (16)
[7]   Generalized Hydrodynamics with Space-Time Inhomogeneous Interactions [J].
Bastianello, Alvise ;
Alba, Vincenzo ;
Caux, Jean-Sebastien .
PHYSICAL REVIEW LETTERS, 2019, 123 (13)
[8]   Finite-temperature transport in one-dimensional quantum lattice models [J].
Bertini, B. ;
Heidrich-Meisner, F. ;
Karrasch, C. ;
Prosen, T. ;
Steinigeweg, R. ;
Znidaric, M. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[9]   Transport in the sine-Gordon field theory: From generalized hydrodynamics to semiclassics [J].
Bertini, Bruno ;
Piroli, Lorenzo ;
Kormos, Marton .
PHYSICAL REVIEW B, 2019, 100 (03)
[10]   Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents [J].
Bertini, Bruno ;
Collura, Mario ;
De Nardis, Jacopo ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2016, 117 (20)