Leftover Kiwi Fruit Peel-Derived Carbon Dots as a Highly Selective Fluorescent Sensor for Detection of Ferric Ion

被引:85
作者
Atchudan, Raji [1 ]
Edison, Thomas Nesakumar Jebakumar Immanuel [1 ]
Perumal, Suguna [1 ]
Vinodh, Rajangam [2 ]
Sundramoorthy, Ashok K. [3 ]
Babu, Rajendran Suresh [4 ]
Lee, Yong Rok [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
[2] Pusan Natl Univ, Sch Elect & Comp Engn, Busan 46241, South Korea
[3] SRM Inst Sci & Technol, Dept Chem, Kattankulathur 603203, Tamil Nadu, India
[4] Celso Suckow Fonseca CEFET RJ, Lab Expt & Appl Phys, Ctr Fed Educ Tecnol, Av Maracana 229, BR-20271110 Rio De Janeiro, Brazil
基金
新加坡国家研究基金会;
关键词
kiwi fruit peel; hydrothermal-carbonization; carbon dots; fluorescent sensor; ferric ion detection; LABEL-FREE DETECTION; OFF-ON FLUORESCENCE; QUANTUM DOTS; GREEN SYNTHESIS; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; FE3+ IONS; MICROWAVE; PROBE; CYTOTOXICITY;
D O I
10.3390/chemosensors9070166
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, the use of natural products for the synthesis of carbon dots (CDs) has received much attention. Herein, leftover kiwi (Actinidia Deliciosa) fruit peels were successfully turned into beneficial fluorescent carbon dots (KN-CDs) via the hydrothermal-carbonization route. KN-CDs 1 and KN-CDs 2 were prepared without and with ammonium hydroxide, respectively. KN-CDs 1 and KN-CDs 2 were systematically characterized by various analytical techniques. Synthesized KN-CDs showed spherical-shaped morphology with narrow size distribution and excellent optical properties with excitation-independent behaviors. The quantum yields of KN-CDs 1 and KN-CDs 2 were calculated as 14 and 19%, respectively. Additionally, the KN-CDs possess excellent prolonging and photostability. Because of the excellent optical properties of KN-CDs, they were utilized as fluorescent sensors. The strong fluorescence of the KN-CDs was selectively quenched by Fe3+ ion, and quenching behavior showed a linear correlation with the concentrations of Fe3+ ion. KN-CDs 1 and KN-CDs 2 showed the detection of Fe3+ ions within the concentration range of 5-25 mu M with the detection limit of 0.95 and 0.85 mu M, respectively. Based on the turn-off sensing by the detection of Fe3+ ions, KN-CDs would be a promising candidate as a selective and sensitive fluorescent sensor.
引用
收藏
页数:15
相关论文
共 67 条
[1]   CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite [J].
Alarfaj, Nawal Ahmad ;
El-Tohamy, Maha Farouk ;
Oraby, Hesham Farouk .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (04)
[2]   Mesoporous Tungsten Trioxide Photoanodes Modified with Nitrogen-Doped Carbon Quantum Dots for Enhanced Oxygen Evolution Photo-Reaction [J].
Amer, Mabrook S. ;
Arunachalam, Prabhakarn ;
Al-Mayouf, Abdullah M. ;
Prasad, Saradh ;
Alshalwi, Matar N. ;
Ghanem, Mohamed A. .
NANOMATERIALS, 2019, 9 (10)
[3]   Facile synthesis of a novel nitrogen-doped carbon dot adorned zinc oxide composite for photodegradation of methylene blue [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Mani, Shanmugam ;
Perumal, Suguna ;
Vinodh, Rajangam ;
Thirunavukkarasu, Somanathan ;
Lee, Yong Rok .
DALTON TRANSACTIONS, 2020, 49 (48) :17725-17736
[4]   Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Shanmugam, Mani ;
Perumal, Suguna ;
Somanathan, Thirunavukkarasu ;
Lee, Yong Rok .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 126
[5]   Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Perumal, Suguna ;
Muthuchamy, Nallal ;
Lee, Yong Rok .
FUEL, 2020, 275
[6]   Eco-friendly synthesis of tunable fluorescent carbon nanodots from Malus floribunda for sensors and multicolor bioimaging [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Perumal, Suguna ;
Muthuchamy, Nallal ;
Lee, Yong Rok .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2020, 390
[7]   Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Perumal, Suguna ;
Vinodh, Rajangam ;
Lee, Yong Rok .
JOURNAL OF MOLECULAR LIQUIDS, 2019, 296
[8]   Multicolor-emitting carbon dots from Malus floribunda and their interaction with Caenorhabditis elegans [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Perumal, Suguna ;
Vinodh, Rajangam ;
Lee, Yong Rok .
MATERIALS LETTERS, 2020, 261 (261)
[9]   Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Aseer, Kanikkai Raja ;
Perumal, Suguna ;
Lee, Yong Rok .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 169 :321-328
[10]   Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Aseer, Kanikkai Raja ;
Perumal, Suguna ;
Karthik, Namachivayam ;
Lee, Yong Rok .
BIOSENSORS & BIOELECTRONICS, 2018, 99 :303-311