Extended Newton-type method for nonlinear functions with values in a cone

被引:1
作者
Silva, G. N. [1 ]
Santos, P. S. M. [2 ]
Souza, S. S. [2 ]
机构
[1] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[2] Univ Fed Piaui, Dept Matemat, Parnaiba, PI, Brazil
关键词
Newton-like method; Inclusion problem; Banach space; Convex process; CONVEX-COMPOSITE OPTIMIZATION; SOLVING GENERALIZED EQUATIONS; MAJORANT CONDITION; CONVERGENCE ANALYSIS; INCLUSION PROBLEMS; OUTER INVERSES; BANACH-SPACES; ERROR-BOUNDS; KANTOROVICHS; INEQUALITIES;
D O I
10.1007/s40314-018-0617-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341-347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295-313, 1986; Numer Math 51(5):545-557, 1987) and Robinson (Numer Math 19:341-347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.
引用
收藏
页码:5082 / 5097
页数:16
相关论文
共 50 条
  • [31] A STUDY ON NEWTON-TYPE INEQUALITIES BOUNDS FOR TWICE *DIFFERENTIABLE FUNCTIONS UNDER MULTIPLICATIVE KATUGAMPOLA FRACTIONAL INTEGRALS
    Ai, Dingyi
    Du, Tingsong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [32] Convergence analysis for single point Newton-type iterative schemes
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 55 - 65
  • [33] Generalized convergence conditions for the local and semilocal analyses of higher order Newton-type iterations
    Singh, Harmandeep
    Sharma, Janak Raj
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08)
  • [34] Generalized convergence conditions for the local and semilocal analyses of higher order Newton-type iterations
    Harmandeep Singh
    Janak Raj Sharma
    Computational and Applied Mathematics, 2023, 42
  • [35] Convergence analysis for single point Newton-type iterative schemes
    Ioannis K. Argyros
    Santhosh George
    Journal of Applied Mathematics and Computing, 2020, 62 : 55 - 65
  • [36] Asymptotically Newton-Type Methods without Inverses for Solving Equations
    Argyros, Ioannis K.
    George, Santhosh
    Shakhno, Stepan
    Regmi, Samundra
    Havdiak, Mykhailo
    Argyros, Michael I.
    MATHEMATICS, 2024, 12 (07)
  • [37] Newton-type methods on Riemannian manifolds under Kantorovich-type conditions
    Amat, S.
    Argyros, I. K.
    Busquier, S.
    Castro, R.
    Hilout, S.
    Plaza, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 762 - 787
  • [38] On the Existence Theorem of a Three-Step Newton-Type Method Under Weak L-Average
    Jaiswal, J. P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2024, 94 (02) : 227 - 233
  • [39] On the Existence Theorem of a Three-Step Newton-Type Method Under Weak L-Average
    J. P. Jaiswal
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2024, 94 : 227 - 233
  • [40] A smoothing Newton-type method for solving the L 2 spectral estimation problem with lower and upper bounds
    Ling, Chen
    Yin, Hongxia
    Zhou, Guanglu
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 50 (02) : 351 - 378