Extended Newton-type method for nonlinear functions with values in a cone

被引:1
|
作者
Silva, G. N. [1 ]
Santos, P. S. M. [2 ]
Souza, S. S. [2 ]
机构
[1] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[2] Univ Fed Piaui, Dept Matemat, Parnaiba, PI, Brazil
关键词
Newton-like method; Inclusion problem; Banach space; Convex process; CONVEX-COMPOSITE OPTIMIZATION; SOLVING GENERALIZED EQUATIONS; MAJORANT CONDITION; CONVERGENCE ANALYSIS; INCLUSION PROBLEMS; OUTER INVERSES; BANACH-SPACES; ERROR-BOUNDS; KANTOROVICHS; INEQUALITIES;
D O I
10.1007/s40314-018-0617-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341-347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295-313, 1986; Numer Math 51(5):545-557, 1987) and Robinson (Numer Math 19:341-347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.
引用
收藏
页码:5082 / 5097
页数:16
相关论文
共 50 条
  • [11] Majorizing functions and two-point Newton-type methods
    Chen, Jinhai
    Argyros, Ioannis K.
    Agarwal, Ravi P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1473 - 1484
  • [12] ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 1 - 27
  • [13] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374
  • [14] Extended local convergence for Newton-type solver under weak conditions
    Argyros, Ioannis K.
    George, Santhosh
    Senapati, Kedarnath
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (04): : 757 - 768
  • [15] A Newton-type midpoint method with high efficiency index
    Cardenas, Elkin
    Castro, Rodrigo
    Sierra, Willy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [16] Extended Newton-type Method for Nonsmooth Generalized Equation under (n,a)-point-based Approximation
    Khaton, M. Z.
    Rashid, M. H.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2022, 2022
  • [17] Inexact Newton-type methods
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF COMPLEXITY, 2010, 26 (06) : 577 - 590
  • [18] Critical solutions of nonlinear equations: local attraction for Newton-type methods
    Izmailov, A. F.
    Kurennoy, A. S.
    Solodov, M. V.
    MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 355 - 379
  • [19] A Greedy Newton-Type Method for Multiple Sparse Constraint Problem
    Sun, Jun
    Kong, Lingchen
    Qu, Biao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (03) : 829 - 854
  • [20] A Greedy Newton-Type Method for Multiple Sparse Constraint Problem
    Jun Sun
    Lingchen Kong
    Biao Qu
    Journal of Optimization Theory and Applications, 2023, 196 : 829 - 854