Extended Newton-type method for nonlinear functions with values in a cone

被引:1
|
作者
Silva, G. N. [1 ]
Santos, P. S. M. [2 ]
Souza, S. S. [2 ]
机构
[1] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[2] Univ Fed Piaui, Dept Matemat, Parnaiba, PI, Brazil
关键词
Newton-like method; Inclusion problem; Banach space; Convex process; CONVEX-COMPOSITE OPTIMIZATION; SOLVING GENERALIZED EQUATIONS; MAJORANT CONDITION; CONVERGENCE ANALYSIS; INCLUSION PROBLEMS; OUTER INVERSES; BANACH-SPACES; ERROR-BOUNDS; KANTOROVICHS; INEQUALITIES;
D O I
10.1007/s40314-018-0617-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341-347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295-313, 1986; Numer Math 51(5):545-557, 1987) and Robinson (Numer Math 19:341-347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.
引用
收藏
页码:5082 / 5097
页数:16
相关论文
共 50 条
  • [1] Extended Newton-type method for nonlinear functions with values in a cone
    G. N. Silva
    P. S. M. Santos
    S. S. Souza
    Computational and Applied Mathematics, 2018, 37 : 5082 - 5097
  • [2] Inexact Newton method for non-linear functions with values in a cone
    Ferreira, O. P.
    Silva, G. N.
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1461 - 1477
  • [3] Newton-type method for solving generalized inclusion
    Santos, P. S. M.
    Silva, G. N.
    Silva, R. C. M.
    NUMERICAL ALGORITHMS, 2021, 88 (04) : 1811 - 1829
  • [4] EXTENDED NEWTON'S METHOD FOR MAPPINGS ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE
    Wang, Jin-Hua
    Huang, Shuechin
    Li, Chong
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (2B): : 633 - 656
  • [5] Newton-type method for solving generalized inclusion
    P. S. M. Santos
    G. N. Silva
    R. C. M. Silva
    Numerical Algorithms, 2021, 88 : 1811 - 1829
  • [6] Inexact Newton’s Method to Nonlinear Functions with Values in a Cone Using Restricted Convergence Domains
    Argyros I.K.
    George S.
    Erappa S.M.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 953 - 959
  • [7] Extended Newton-type iteration for nonlinear ill-posed equations in Banach space
    C. D. Sreedeep
    Santhosh George
    Ioannis K. Argyros
    Journal of Applied Mathematics and Computing, 2019, 60 : 435 - 453
  • [8] Extended Newton-type iteration for nonlinear ill-posed equations in Banach space
    Sreedeep, C. D.
    George, Santhosh
    Argyros, Ioannis K.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 435 - 453
  • [9] Newton-type methods under regular smoothness
    Galperin, A
    Waksman, Z
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (3-4) : 259 - 291
  • [10] Newton-Type Method with Double Regularization Parameters for Nonlinear Ill-Posed Problems
    Meng, Zehong
    Zhao, Zhenyu
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 2, 2009, : 367 - +