Existence and orbital stability of standing waves to a nonlinear Schrodinger equation with inverse square potential on the half-line

被引:0
作者
Csobo, Elek [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60629 Frankfurt, Germany
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2021年 / 28卷 / 05期
关键词
Nonlinear Schrodinger equation; Hardy's inequality; Standing waves; Orbital stability; CONCENTRATION-COMPACTNESS PRINCIPLE; CALCULUS;
D O I
10.1007/s00030-021-00711-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our work, we establish the existence of standing waves to a nonlinear Schrodinger equation with inverse-square potential on the half-line. We apply a profile decomposition argument to overcome the difficulty arising from the non-compactness of the setting. We obtain convergent minimizing sequences by comparing the problem to the problem at "infinity" (i.e., the equation without inverse square potential). Finally, we establish orbital stability/instability of the standing wave solution for mass subcritical and supercritical nonlinearities respectively.
引用
收藏
页数:32
相关论文
共 23 条
  • [1] [Anonymous], 1999, The Maz'ya Anniversary Collection, DOI DOI 10.1007/978-3-0348-8672-7_5
  • [2] On stability and instability of standing waves for the nonlinear Schrodinger equation with an inverse-square potential
    Bensouilah, Abdelwahab
    Van Duong Dinh
    Zhu, Shihui
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [3] Homogeneous Schrodinger Operators on Half-Line
    Bruneau, Laurent
    Derezinski, Jan
    Georgescu, Vladimir
    [J]. ANNALES HENRI POINCARE, 2011, 12 (03): : 547 - 590
  • [4] ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS
    CAZENAVE, T
    LIONS, PL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) : 549 - 561
  • [5] Cazenave T, 2003, COURANT LECT NOTES M, V10, DOI [10.1090/cln/010, DOI 10.1090/CLN/010]
  • [6] Cazenave T., 1998, Oxford Lecture Series in Mathematics and its Applications, V13
  • [7] Minimal mass blow-up solutions for the L2 critical NLS with inverse-square potential
    Csobo, Elek
    Genoud, Francois
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 168 : 110 - 129
  • [8] Fukuizumi R, 2008, DISCRETE CONT DYN-A, V21, P121
  • [9] Hajaiej H, 2004, ADV NONLINEAR STUD, V4, P469
  • [10] A positive solution for a nonlinear Schrodinger equation on RN
    Jeanjean, L
    Tanaka, K
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (02) : 443 - 464