Electronic structure of Fe, α-Fe2O3 and Fe(NO3)3 x 9 H2O determined using RXES

被引:5
作者
Nowakowski, Michal [1 ]
Czapla-Masztafiak, Joanna [1 ]
Szlachetko, Jakub [2 ]
Kwiatek, Wojciech M. [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
[2] Jan Kochanowski Univ Kielce, Inst Phys, PL-25406 Kielce, Poland
关键词
RXES; Iron; X-ray spectroscopy; FEFF; Density of states; RAY-EMISSION SPECTROSCOPY; OXIDATION-STATE; ACTIVE-SITES; SCATTERING; OXIDE; SPECTRA; OXYGEN; XANES;
D O I
10.1016/j.chemphys.2017.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Resonant X-ray emission spectroscopy (RXES) technique was applied to probe electronic states of three Fe compounds: Fe, alpha-Fe2O3 (hematite) and Fe(NO3)3 x 9 H2O (ferric nitrate) around Fe K-absorption edge with simultaneous detection of K beta and valence-to-core transitions. We show that deep insights on the valence and conduction band position, such as main orbital contribution to band-gap formation and ligand orbital contributions, can be retrieved from RXES data. Moreover applicability of K beta and valence-to-core RXES measurements to extract band gap energies is demonstrated. Obtained results were supplemented with ab initio calculations allowing precise determination of orbital contributions to the measured spectral features. Good agreement with experimental results has shown that proposed approach is promising tool in further applications. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [41] Technetium Incorporation into Hematite (α-Fe2O3)
    Skomurski, Frances N.
    Rosso, Kevin M.
    Krupka, Kenneth M.
    McGrail, B. Pete
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (15) : 5855 - 5861
  • [42] Synthesis and structural analysis of ε-Fe2O3
    Kelm, K
    Mader, W
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2005, 631 (12): : 2383 - 2389
  • [43] Absorption Spectra of Some Alkali Borate Glasses Containing NiO or Fe2O3 or Mixed NiO + Fe2O3
    El-Batal, F. H.
    Fayad, A. M.
    El-Kashef, I. M.
    Moustaffa, F. A.
    SILICON, 2013, 5 (04) : 297 - 306
  • [44] Reduction of Oxide Mixtures of (Fe2O3 + CuO) and (Fe2O3 + Co3O4) by Low-Temperature Hydrogen Plasma
    Sabat, K. C.
    Paramguru, R. K.
    Mishra, B. K.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2017, 37 (04) : 979 - 995
  • [45] Thermal oxide synthesis and characterization of Fe3O4 nanorods and Fe2O3 nanowires
    Jiao Hua
    Yang HeQing
    SCIENCE IN CHINA SERIES B-CHEMISTRY, 2009, 52 (05): : 599 - 604
  • [46] Selective growth of Fe3O4 and γ-Fe2O3 films with reactive magnetron sputtering
    Yanagihara, H.
    Myoka, M.
    Isaka, D.
    Niizeki, T.
    Mibu, K.
    Kita, E.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (17)
  • [47] Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes
    Zhang, Fenghua
    Yang, Heqing
    Xie, Xiaoli
    Li, Li
    Zhang, Lihui
    Yu, Jie
    Zhao, Hua
    Liu, Bin
    SENSORS AND ACTUATORS B-CHEMICAL, 2009, 141 (02) : 381 - 389
  • [48] Tuning the band gap of hematite α-Fe2O3 by sulfur doping
    Xia, Congxin
    Jia, Yu
    Tao, Meng
    Zhang, Qiming
    PHYSICS LETTERS A, 2013, 377 (31-33) : 1943 - 1947
  • [49] Adsorption Properties of Fe2O3 and Fe2O3:SiO2 Mixtures in the Removal Process of As(III) from Underground Waters
    Negrea, Adina
    Lupa, Lavinia
    Lazau, Radu
    Ciopec, Mihaela
    Pop, Oana
    Motoc, Marilena
    REVISTA DE CHIMIE, 2013, 64 (05): : 487 - 494
  • [50] A facile urea-hydrolysis calcination process for the preparation of α-Fe2O3 nanoparticles and α-Fe2O3 nanorods and their fabrication mechanisms
    Chen, Jianhong
    Huang, Wei
    Pan, Shuai
    Liu, Ruijiang
    AIP ADVANCES, 2020, 10 (02)