Electronic structure of Fe, α-Fe2O3 and Fe(NO3)3 x 9 H2O determined using RXES

被引:5
作者
Nowakowski, Michal [1 ]
Czapla-Masztafiak, Joanna [1 ]
Szlachetko, Jakub [2 ]
Kwiatek, Wojciech M. [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
[2] Jan Kochanowski Univ Kielce, Inst Phys, PL-25406 Kielce, Poland
关键词
RXES; Iron; X-ray spectroscopy; FEFF; Density of states; RAY-EMISSION SPECTROSCOPY; OXIDATION-STATE; ACTIVE-SITES; SCATTERING; OXIDE; SPECTRA; OXYGEN; XANES;
D O I
10.1016/j.chemphys.2017.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Resonant X-ray emission spectroscopy (RXES) technique was applied to probe electronic states of three Fe compounds: Fe, alpha-Fe2O3 (hematite) and Fe(NO3)3 x 9 H2O (ferric nitrate) around Fe K-absorption edge with simultaneous detection of K beta and valence-to-core transitions. We show that deep insights on the valence and conduction band position, such as main orbital contribution to band-gap formation and ligand orbital contributions, can be retrieved from RXES data. Moreover applicability of K beta and valence-to-core RXES measurements to extract band gap energies is demonstrated. Obtained results were supplemented with ab initio calculations allowing precise determination of orbital contributions to the measured spectral features. Good agreement with experimental results has shown that proposed approach is promising tool in further applications. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [31] Reagent-and solvent-mediated Fe2O3 morphologies and electrochemical mechanism of Fe2O3 ???????supercapacitors
    Phakkhawan, Authit
    Suksangrat, Pitphichaya
    Srepusharawoot, Pornjuk
    Ruangchai, Sukhum
    Klangtakai, Pawinee
    Pimanpang, Samuk
    Amornkitbamrung, Vittaya
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [32] Analysis of Fe2O3 and Fe3O4 Dissolution Kinetics in Terms of the Chain Mechanism Model
    A. E. Chastukhin
    A. D. Izotov
    I. G. Gorichev
    A. M. Kutepov
    Theoretical Foundations of Chemical Engineering, 2003, 37 : 398 - 406
  • [33] Thermal Decomposition Approach for the Formation of α-Fe2O3 Mesoporous Photoanodes and an α-Fe2O3/CoO Hybrid Structure for Enhanced Water Oxidation
    Diab, Mahmud
    Mokari, Taleb
    INORGANIC CHEMISTRY, 2014, 53 (04) : 2304 - 2309
  • [34] Structure versus properties in α-Fe2O3 nanowires and nanoblades
    Wang, Chao
    Wang, Yiqian
    Liu, Xuehua
    Yang, Huaiwen
    Sun, Jirong
    Yuan, Lu
    Zhou, Guangwen
    Rosei, Federico
    NANOTECHNOLOGY, 2016, 27 (03)
  • [35] Synthesis and properties of α-Fe2O3 nanorods
    Ramesh, R.
    Ashok, K.
    Bhalero, G. M.
    Ponnusamy, S.
    Muthamizhchelvan, C.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2010, 45 (09) : 965 - 968
  • [36] Thermal stability of nanocrystalline ε-Fe2O3
    Brazda, Petr
    Vecernikova, Eva
    Plizingrova, Eva
    Lancok, Adriana
    Niznansky, Daniel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (01) : 85 - 91
  • [37] Defects and growing mechanisms of α-Fe2O3 nanowires
    Han, Q.
    Xu, Y. Y.
    Fu, Y. Y.
    Zhang, H.
    Wang, R. M.
    Wang, T. M.
    Chen, Z. Y.
    CHEMICAL PHYSICS LETTERS, 2006, 431 (1-3) : 100 - 103
  • [38] Amorphous Fe2O3 for photocatalytic hydrogen evolution
    Lin, Zhaoyong
    Du, Chun
    Yan, Bo
    Yang, Guowei
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (20) : 5582 - 5592
  • [39] Formation of Fe and Fe2O3 Microspirals via Interfacial Synthesis
    Gulina, Larisa B.
    Tolstoy, Valeri P.
    Lobinsky, Artem A.
    Petrov, Yuri V.
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2018, 35 (09)
  • [40] Photoinduced Superparamagnetism in Nanostructured α-Fe2O3
    Macdonald, I. Ross
    Howe, Russell F.
    Saremi-Yarahmadi, Sina
    Wijayantha, K. G. U.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (16): : 2488 - 2492