Semantic Segmentation of Remote Sensing Images With Self-Supervised Multitask Representation Learning

被引:44
|
作者
Li, Wenyuan [2 ,3 ]
Chen, Hao [2 ,3 ]
Shi, Zhenwei [1 ,2 ,3 ]
机构
[1] Beihang Univ, Sch Astronaut, Image Proc Ctr, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Astronaut, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Task analysis; Remote sensing; Semantics; Image segmentation; Training; Sensors; Snow; Cloud detection; remote sensing images; self-supervised representation learning; semantic segmentation; CLOUD DETECTION; CONVOLUTIONAL NETWORKS;
D O I
10.1109/JSTARS.2021.3090418
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing deep learning-based remote sensing images semantic segmentation methods require large-scale labeled datasets. However, the annotation of segmentation datasets is often too time-consuming and expensive. To ease the burden of data annotation, self-supervised representation learning methods have emerged recently. However, the semantic segmentation methods need to learn both high-level and low-level features, but most of the existing self-supervised representation learning methods usually focus on one level, which affects the performance of semantic segmentation for remote sensing images. In order to solve this problem, we propose a self-supervised multitask representation learning method to capture effective visual representations of remote sensing images. We design three different pretext tasks and a triplet Siamese network to learn the high-level and low-level image features at the same time. The network can be trained without any labeled data, and the trained model can be fine-tuned with the annotated segmentation dataset. We conduct experiments on Potsdam, Vaihingen dataset, and cloud/snow detection dataset Levir_CS to verify the effectiveness of our methods. Experimental results show that our proposed method can effectively reduce the demand of labeled datasets and improve the performance of remote sensing semantic segmentation. Compared with the recent state-of-the-art self-supervised representation learning methods and the mostly used initialization methods (such as random initialization and ImageNet pretraining), our proposed method has achieved the best results in most experiments, especially in the case of few training data. With only 10% to 50% labeled data, our method can achieve the comparable performance compared with random initialization. Codes are available at https://github.com/flyakon/SSLRemoteSensing.
引用
收藏
页码:6438 / 6450
页数:13
相关论文
共 50 条
  • [41] FogAdapt: Self-supervised domain adaptation for semantic segmentation of foggy images
    Iqbal, Javed
    Hafiz, Rehan
    Ali, Mohsen
    NEUROCOMPUTING, 2022, 501 : 844 - 856
  • [42] MARE: Self-Supervised Multi-Attention REsu-Net for Semantic Segmentation in Remote Sensing
    Marsocci, Valerio
    Scardapane, Simone
    Komodakis, Nikos
    REMOTE SENSING, 2021, 13 (16)
  • [43] When Self-Supervised Learning Meets Scene Classification: Remote Sensing Scene Classification Based on a Multitask Learning Framework
    Zhao, Zhicheng
    Luo, Ze
    Li, Jian
    Chen, Can
    Piao, Yingchao
    REMOTE SENSING, 2020, 12 (20) : 1 - 22
  • [44] ScoreSeg: Leveraging Score-Based Generative Model for Self-Supervised Semantic Segmentation of Remote Sensing
    Lu, Junzhe
    He, Guangjun
    Dou, Hongkun
    Gao, Qing
    Fang, Leyuan
    Deng, Yue
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 8818 - 8833
  • [45] Point-Based Weakly Supervised Deep Learning for Semantic Segmentation of Remote Sensing Images
    Zhao, Yuanhao
    Sun, Genyun
    Ling, Ziyan
    Zhang, Aizhu
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [46] Learning disentangled representation for self-supervised video object segmentation
    Hou, Wenjie
    Qin, Zheyun
    Xi, Xiaoming
    Lu, Xiankai
    Yin, Yilong
    NEUROCOMPUTING, 2022, 481 : 270 - 280
  • [47] Learning disentangled representation for self-supervised video object segmentation
    Hou, Wenjie
    Qin, Zheyun
    Xi, Xiaoming
    Lu, Xiankai
    Yin, Yilong
    Neurocomputing, 2022, 481 : 270 - 280
  • [48] In-Domain Supervised and Contrastive Self-Supervised Representation Learning for Dense Prediction Problems in Remote Sensing Imageries
    Ghanbarzadeh, Ali
    Soleimani, Hossein
    IEEE ACCESS, 2024, 12 : 183510 - 183524
  • [49] AST: Adaptive Self-supervised Transformer for optical remote sensing representation
    He, Qibin
    Sun, Xian
    Yan, Zhiyuan
    Wang, Bing
    Zhu, Zicong
    Diao, Wenhui
    Yang, Michael Ying
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 200 : 41 - 54
  • [50] Self-Supervised Representation Learning for Remote Sensing Image Change Detection Based on Temporal Prediction
    Dong, Huihui
    Ma, Wenping
    Wu, Yue
    Zhang, Jun
    Jiao, Licheng
    REMOTE SENSING, 2020, 12 (11)