Photon self-induced spin-to-orbital conversion in a terbium-gallium-garnet crystal at high laser power

被引:12
作者
Mosca, S. [1 ,2 ]
Canuel, B. [3 ]
Karimi, E. [1 ]
Piccirillo, B. [1 ,4 ]
Marrucci, L. [1 ,5 ]
De Rosa, R. [1 ,2 ]
Genin, E. [3 ]
Milano, L. [1 ,2 ]
Santamato, E. [1 ,4 ]
机构
[1] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[3] EGO, Cascina, PI, Italy
[4] CNISM Consorzio Nazl Interuniv Sci Fis Materia, Naples, Italy
[5] CNR INFM Coherentia, I-80126 Naples, Italy
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 04期
关键词
ND-YAG LASER;
D O I
10.1103/PhysRevA.82.043806
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present experimental evidence of a third-order nonlinear optical process, self-induced spin-to-orbital conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium-gallium-garnet rod for an impinging laser power of about 100 W. To study the SISTOC process we used different techniques: polarization analysis, interferometry, and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism could be of some help in finding novel methods to reduce or to compensate for this usually unwanted depolarization effect in all cases where very high laser power and good beam quality are required.
引用
收藏
页数:6
相关论文
共 18 条
[1]   In-vacuum Faraday isolation remote tuning [J].
Accadia, T. ;
Acernese, F. ;
Antonucci, F. ;
Aoudia, S. ;
Arun, K. G. ;
Astone, P. ;
Ballardin, G. ;
Barone, F. ;
Barsuglia, M. ;
Bauer, Th. S. ;
Beker, M. G. ;
Bigotta, S. ;
Birindelli, S. ;
Bitossi, M. ;
Bizouard, M. A. ;
Blom, M. ;
Boccara, C. ;
Bondu, F. ;
Bonelli, L. ;
Bosi, L. ;
Braccini, S. ;
Bradaschia, C. ;
Brillet, A. ;
Brisson, V. ;
Budzynski, R. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Cagnoli, G. ;
Calloni, E. ;
Campagna, E. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. ;
Cavalieri, R. ;
Cella, G. ;
Cesarini, E. ;
Chassande-Mottin, E. ;
Chincarini, A. ;
Cleva, F. ;
Coccia, E. ;
Colacino, C. N. ;
Colas, J. ;
Colla, A. ;
Colombini, M. ;
Corda, C. ;
Corsi, A. ;
Coulon, J. -P. ;
Cuoco, E. ;
D'Antonio, S. .
APPLIED OPTICS, 2010, 49 (25) :4780-4790
[2]  
[Anonymous], VIR0027A09 VIRG COLL
[3]   Design of the advanced LIGO recycling cavities [J].
Arain, Muzammil A. ;
Mueller, Guido .
OPTICS EXPRESS, 2008, 16 (14) :10018-10032
[4]  
FORSTER JD, 1970, J APPL PHYS, V41, P3656
[5]   High-power single-frequency Nd:YAG laser for gravitational wave detection [J].
Frede, M ;
Wilhelm, R ;
Gau, R ;
Brendel, M ;
Zawischa, I ;
Fallnich, C ;
Seifert, F ;
Willke, B .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) :S895-S901
[6]   High power fundamental mode Nd:YAG laser with efficient birefringence compensation [J].
Frede, M ;
Wilhelm, R ;
Brendel, M ;
Fallnich, C ;
Seifert, F ;
Willke, B ;
Danzmann, K .
OPTICS EXPRESS, 2004, 12 (15) :3581-3589
[7]   The GEO 600 status [J].
Grote, H. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (08)
[8]   Measurement of qubits [J].
James, DFV ;
Kwiat, PG ;
Munro, WJ ;
White, AG .
PHYSICAL REVIEW A, 2001, 64 (05) :15-523121
[9]   Light propagation in a birefringent plate with topological charge [J].
Karimi, Ebrahim ;
Piccirillo, Bruno ;
Marrucci, Lorenzo ;
Santamato, Enrico .
OPTICS LETTERS, 2009, 34 (08) :1225-1227
[10]   Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates [J].
Karimi, Ebrahim ;
Piccirillo, Bruno ;
Nagali, Eleonora ;
Marrucci, Lorenzo ;
Santamato, Enrico .
APPLIED PHYSICS LETTERS, 2009, 94 (23)