The weak theory of monads

被引:21
作者
Boehm, Gabriella [1 ]
机构
[1] Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary
基金
匈牙利科学研究基金会;
关键词
2-Category; Monad; Weak lifting; CROSSED-PRODUCTS; HOPF-ALGEBRAS;
D O I
10.1016/j.aim.2010.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a 'weak' version EMw(K) of Lack and Street's 2-category of monads in a 2-category K, by replacing their compatibility constraint of 1-cells with the units of monads by an additional condition on the 2-cells. A relation between monads in EMw(K) and composite pre-monads in K is discussed If K admits Eilenberg-Moore constructions for monads, we define two symmetrical notions of 'weak fittings' for monads in K If moreover idempoient 2-cells in K split, we describe both kinds of weak lifting via an appropriate pseudo-functor EMw(K) -> K Weak entwining structures and partial entwining structures are shown to realize weak littings of a comonad for a monad in these respective senses. Weak bialgebras are characterized as algebras and coalgebras. such that the corresponding monads weakly lift for the corresponding comonads and also the comonads weakly lift for the monads (C) 2010 Elsevier Inc. All rights reserved
引用
收藏
页码:1 / 32
页数:32
相关论文
共 23 条
[1]  
Beck Jon, 1969, SEMINAR TRIPLES CATE, P119, DOI 10.1007/BFb0083084
[2]   CROSSED-PRODUCTS AND INNER ACTIONS OF HOPF-ALGEBRAS [J].
BLATTNER, RJ ;
COHEN, M ;
MONTGOMERY, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (02) :671-711
[3]   Cleft extensions of Hopf algebroids [J].
Boehm, Gabriella ;
Brzezinski, Tomasz .
APPLIED CATEGORICAL STRUCTURES, 2006, 14 (5-6) :431-469
[4]   Weak Hopf algebras I.: Integral theory and C*-structure [J].
Böhm, G ;
Nill, F ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 1999, 221 (02) :385-438
[5]   Doi-Hopf modules over Weak Hopf Algebras [J].
Böhm, G .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (10) :4687-4698
[6]  
BOHM G, ARXIV09024197V2
[7]  
BOHM G, 2009, APPL CATEGOR STRUCT, V17, P613
[8]   The structure of corings: Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties [J].
Brzezinski, T .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (04) :389-410
[9]   Crossed products by a coalgebra [J].
Brzezinski, T .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (11) :3551-3575
[10]   Partial (co)actions of Hopf algebras and partial Hopf-Galois theory [J].
Caenepeel, S. ;
Janssen, K. .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (08) :2923-2946