Automorphism groups of positive entropy on minimal projective varieties

被引:4
作者
Zhang, De-Qi [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
关键词
Automorphism group; Topological entropy; Calabi-Yau variety; TITS TYPE; THEOREM; MODELS;
D O I
10.1016/j.aim.2010.04.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the geometric structure of a minimal projective threefold having two 'independent and commutative' automorphisms of positive topological entropy, and generalize this result to higher-dimensional smooth minimal pairs (X, G). As a consequence, we give an effective lower bound for the first dynamical degree of these automorphisms of X fitting the 'boundary case'. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2332 / 2340
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 2009, J DIFFER GEOM, V82, P691
[2]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[3]  
Beauville A., 1983, Progress in Mathematics, V39, P1
[4]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[5]   LINEAR TRANSFORMATIONS WITH INVARIANT CONES [J].
BIRKHOFF, G .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (03) :274-+
[6]  
Dinh TC, 2004, DUKE MATH J, V123, P311
[7]  
KAWAMATA Y, 1985, J REINE ANGEW MATH, V363, P1
[8]  
Keum J, 2009, MATH RES LETT, V16, P133
[9]  
KIM JH, ARXIV07120438V7
[10]   HIGHER DIRECT IMAGES OF DUALIZING SHEAVES .2. [J].
KOLLAR, J .
ANNALS OF MATHEMATICS, 1986, 124 (01) :171-202