Separating type-I odd-cycle inequalities for a binary-encoded edge-coloring formulation

被引:9
作者
Lee, J
Leung, J
De Vries, S
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Dept Math Sci, Yorktown Hts, NY 10598 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
edge coloring; integer program; binary encoding; odd cycle; separation;
D O I
10.1007/s10878-005-5484-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this note, we describe an efficient algorithm for separating a class of inequalities that includes the type-I odd-cycle inequalities for a binary-encoded edge-coloring formulation.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1993, GEOMETRIC ALGORITHMS
[2]  
COPPERSMITH D, 2003, FIELDS I COMMUNICATI, P71
[3]   A NEW METHOD OF PROVING THEOREMS ON CHROMATIC INDEX [J].
EHRENFEUCHT, A ;
FABER, V ;
KIERSTEAD, HA .
DISCRETE MATHEMATICS, 1984, 52 (2-3) :159-164
[4]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[5]   THE NP-COMPLETENESS OF EDGE-COLORING [J].
HOLYER, I .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :718-720
[6]   A COMPARISON OF 2 EDGE-COLORING FORMULATIONS [J].
LEE, J ;
LEUNG, J .
OPERATIONS RESEARCH LETTERS, 1993, 13 (04) :215-223
[7]   All-different polytopes [J].
Lee, J .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2002, 6 (03) :335-352
[8]  
LEE J, 1990, 9001 YALE U DEP OP R
[9]   A POLYHEDRAL APPROACH TO EDGE COLORING [J].
NEMHAUSER, GL ;
PARK, S .
OPERATIONS RESEARCH LETTERS, 1991, 10 (06) :315-322
[10]  
Nemhauser GL, 1988, INTEGER COMBINATORIA