A framework for characterizing spatio-temporal data models

被引:0
|
作者
Parent, C [1 ]
机构
[1] Univ Lausanne, HEC, INFORGE, CH-1015 Lausanne, Switzerland
来源
ADVANCES IN MULTIMEDIA AND DATABASES FOR THE NEW CENTURY: A SWISS/JAPANESE PERSPECTIVE | 2000年 / 10卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a framework for analyzing and comparing spatio-temporal data models. It focuses on data modeling concepts. The three dimensions of spatio-temporal models, structure, space, and time are described: concepts that are - or should be - supported are defined. The similarity between space and time concepts is emphasized, as well as the importance of orthogonality among the three dimensions. Any structural construct may be spatial and/or temporal, thus allowing to naturally describe moving and deforming objects as well as spatio-temporal continuous fields.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [41] ST-Hadoop: a MapReduce framework for spatio-temporal data
    Louai Alarabi
    Mohamed F. Mokbel
    Mashaal Musleh
    GeoInformatica, 2018, 22 : 785 - 813
  • [42] Characterizing transmission and control of the SARS epidemic: Novel stochastic spatio-temporal models
    Liu, Zihong
    He, Ku
    Yang, Lei
    Bian, Chao
    Wang, Zhihua
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 7463 - 7469
  • [43] A software framework for construction of process-based stochastic spatio-temporal models and data assimilation
    Karssenberg, Derek
    Schmitz, Oliver
    Salamon, Peter
    de Jong, Kor
    Bierkens, Marc F. P.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (04) : 489 - 502
  • [44] VAR models for spatio-temporal structures: An application to environmental data
    Lamberti, A
    Naccarato, A
    New Developments in Classification and Data Analysis, 2005, : 243 - 250
  • [45] Choosing suitable linear coregionalization models for spatio-temporal data
    S. De Iaco
    M. Palma
    D. Posa
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1419 - 1434
  • [46] Learning Localized Spatio-Temporal Models From Streaming Data
    Osama, Muhammad
    Zachariah, Dave
    Schon, Thomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [47] Spatio-temporal Data Analysis for Development of Microclimate Prediction Models
    Hong, Tageui
    Heo, Yeonsook
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 878 - 885
  • [48] Choosing suitable linear coregionalization models for spatio-temporal data
    De Iaco, S.
    Palma, M.
    Posa, D.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (07) : 1419 - 1434
  • [49] Spatio-temporal models and languages: An approach based on data types
    Güting, Ralf Hartmut
    Böhlen, Michael H.
    Erwig, Martin
    Jensen, Christian S.
    Lorentzos, Nikos
    Nardelli, Enrico
    Schneider, Markus
    Viqueira, Jose R.R.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2003, 2520 : 117 - 176
  • [50] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513